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Abstract

We study the pure-strategy subgame-perfect Nash equilibria of stochastic games

with perfect monitoring, geometric discounting, and public randomization. We de-

velop novel algorithms for computing equilibrium payoffs, in which we combine policy

iteration when incentive constraints are slack with value iteration when incentive con-

straints bind. We also provide software implementations of our algorithms. Preliminary

simulations indicate that they are significantly more efficient than existing methods.

The theoretical results that underlie the algorithms also imply bounds on the compu-

tational complexity of equilibrium payoffs when there are two players. When there are

more than two players, we show by example that the number of extreme equilibrium

payoffs may be countably infinite.
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1 Introduction

This paper develops new algorithms for computing equilibrium payoffs in stochastic games.

Specifically, we study the payoffs that can be attained in pure-strategy subgame-perfect

Nash equilibria of repeated games with perfect monitoring, public randomization, and a

stochastically evolving state variable. The current state determines which actions are feasible

for the players as well as the payoffs of those actions. The chosen actions in turn influence

the future evolution of the state. This classical structure is used to model a wide variety of

phenomena in economics and in other disciplines. The range of applications include: dynamic

oligopoly with investment (in, e.g., capacity, research and development, advertising), risk

sharing, and the dynamics of political bargaining and compromise (cf. Ericson and Pakes,

1995; Kocherlakota, 1996; Dixit, Grossman, and Gul, 2000).

The standard methodology for computing subgame-perfect equilibrium payoffs in re-

peated games comes from Abreu, Pearce, and Stacchetti (1986, 1990), hereafter APS. They

showed that the set of equilibrium payoffs satisfies a recursive relationship that is analo-

gous to the Bellman equation from dynamic programming. In particular, any equilibrium

payoff can be decomposed into a flow payoff from the first period of play plus the expected

discounted payoff from the next period onward, which, by subgame perfection, is also an

equilibrium payoff. Just as the value function is the fixed point of the Bellman operator,

so too the equilibrium payoff set is the largest fixed point of an operator that produces the

set of payoffs which can be generated using continuation values chosen from a given set.

Moreover, APS show that iterating this operator on any set that contains all equilibrium

payoffs yields a sequence of sets that asymptotically converges to the set of equilibrium pay-

offs. Although APS wrote explicitly about games with imperfect monitoring and without a

state variable, their results mechanically extend to the class of games studied here, where

payoffs are generated in each state using continuation payoffs drawn from a received payoff

correspondence.1

Our main contribution is a refinement of the APS algorithm. In the analogy with dynamic

programming, the APS algorithm is identified with value function iteration. We combine

this approach with a form of policy iteration, which is used to partially solve out equilibrium

payoffs when incentive constraints are slack. The resulting hybrid algorithm converges faster

than existing methods, and the hybrid operator that is used in this algorithm is of bounded

computational complexity when there are two players. The approach also leads to new

structural insights about equilibria that generate extreme equilibrium payoffs, namely that

1For early extensions involving a state variable see Atkeson (1991) and Phelan and Stacchetti (2001).
A more recent application is Hörner et al. (2011). For a more complete description of the self-generation
methodology for stochastic games, see Mailath and Samuelson (2006).
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play must be stationary until the first period in which an incentive constraint binds.

The approach has several novel elements, some of which apply even to repeated games,

while others are tailored to the stochastic setting. To motivate a defining element of our

refinement, consider an infinitely repeated Prisoners’ Dilemma. We normalize the Nash

payoffs to zero and the payoff from mutual cooperation to 1. Suppose that the discount

factor δ is such that static Nash is the only action profile that can be supported, even when

all feasible payoffs can be promised as continuation values. A fortiori, we can conclude

that the equilibrium payoff set is {(0, 0)}. Nonetheless, this fact will only be discovered

by the APS operator asymptotically: at iteration k, the payoff (δk, δk) will still be in the

APS approximation. For even though mutual cooperation is not used to generate new

payoffs, it is still implicitly being played k periods in the future through the received set of

continuation payoffs. There is, in a sense, an internal inconsistency in the way that the APS

operator is generating new payoffs in this example: It is claimed that static Nash generates

an equilibrium payoff that maximizes the sum of the players’ payoffs, and that this sum is

strictly positive. But the sum of payoffs in the first period is zero, meaning that the sum of

the continuation payoffs must be even higher than the best payoff we can generate! This is

obviously not sustainable in equilibrium.

This example illustrates a more general principle in repeated games: Fix a set of welfare

weights, i.e., a direction in payoff space, and consider the equilibrium with the highest payoffs

in this direction. The action profile played in the first period of this equilibrium must have

flow payoffs that are weakly above the highest equilibrium payoffs. Indeed, this principle

extends to stochastic games: Fix a direction in welfare space. For each state, there is a

highest equilibrium payoff in this direction, which is generated by playing some action profile

in the first period, followed by continuation equilibrium payoffs in every continuation state.

The continuation payoffs are bounded by the highest equilibrium payoff in their respective

states, and sometimes further if required by incentive compatibility. As a result, the highest

equilibrium payoff in a given state is below a recursive level, obtained by playing the optimal

action profile for one period with the highest equilibrium payoffs as continuation payoffs.

This principle motivates our refinement. For a given direction, consider a policy of action

profiles meant to attain the highest payoffs in each state. The highest payoffs in this direction

are attained by recursively continuing this policy, with the highest equilibrium continuation

values, until incentive compatibility requires some value burning. This happens when the

best incentive compatible payoff, i.e., the level generated by the APS operator, is lower than

that attained by following the policy. This leads to the following max-min-max problem to
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bound the level of payoffs:

max over actions of
(

min of
(
the “recursive” level and max level generated by APS

))
.

The max-min-max operator maps a payoff correspondence into the correspondence of payoffs

that are below the max-min-max level in all directions. Our first main result shows that

iterative application of this operator can be used to compute equilibrium payoffs.

Because our operator uses levels that are weakly below those of APS, it generates smaller

correspondences than APS. As a result, the sequence it generates converges weakly faster

than the APS sequence. Indeed, there are even examples, such as the aforementioned Prison-

ers’ Dilemma, where the APS sequence only converges asymptotically, but the max-min-max

sequence converges after finitely many rounds (although this is not generally the case). That

our operator is theoretically novel and cuts more sharply is clear, but perhaps its main ad-

vantage is that it is significantly easier to compute. This derives from additional theoretical

structure that the operator embodies, as we now explain.

First, as long as the max-min-max sequence decreases at the first iteration in the sense of

set containment,2 our operator has the following crucial property: it relies on the maximum

level generated by APS only when an incentive constraint binds for some player. Thus, while

our operator nominally requires us to know the APS levels, in fact it is sufficient to know the

maximal level attained with payoffs in which an incentive constraint binds—a considerably

easier task.

In addition, when computing the max-min-max levels, we maximize over a tuple of action

profiles, and we minimize over a tuple of what we call regimes, which indicate for each state

whether the minimum level is APS or recursive. We refer to the action profiles and regimes

collectively as a policy. We show that for each direction, there exists a policy that optimizes

payoffs simultaneously in all states. For any direction, the optimal policy can be found

through a form of policy iteration. The policy is optimal if and only if for every state there

is no alternative action profile which, if substituted in, would increase the level, and there is

no regime substitution that would lower the level. Once we have found the optimal policy

for one direction, it is easy to compute a range of directions for which it remains optimal,

and also the improving substitution when the optimum changes.

When there are two players, these properties yield an especially powerful implementation.

We find the optimal policy for a starting direction. After that, we move clockwise. By

considering one-state substitutions, we endogenously identify directions where the optimal

2There are many initial correspondences that guarantee this will happen. Two examples are the feasible
payoff correspondence and a correspondence that in every state is equal to a large hypercube that contains
all of the flow payoffs for all states. The latter is what we use in our numerical simulations.
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policy changes and update the optimal policy. After a full revolution, we have bounded

payoffs in all directions. Moreover, for two players, each action profile can generate at

most four extreme binding payoffs, generalizing the result of Abreu and Sannikov (2014) for

repeated games. This leads to a bound on both the complexity of our operator and of the

equilibrium payoff correspondence.

We have implemented this algorithm as a software package that is freely available through

the online supplement and an author’s website.3 We report a number of numerical examples,

including a risk-sharing game à la Kocherlakota (1996).

When there are more than two players, we show by example that the number of extreme

equilibrium payoffs may be countably infinite. As a result, exact computation of equilibrium

payoffs may be impossible. We therefore propose a more flexible operator that bounds

payoffs with the max-min-max level for a subset of directions, which is dynamically updated

between applications. We show that binding payoffs will remain sufficient to determine the

APS level as long as any legacy directions we drop are not needed to determine the binding

payoffs or the local frontier around them. There are no restrictions on how directions can

be added. For any such sequence of direction sets, the algorithm is guaranteed to converge

to a correspondence that contains all equilibrium payoffs. There are many ways to use this

characterization, and we focus on one simple implementation: At every round, we drop some

directions that are redundant for computing binding payoffs. If the number of directions is

below a fixed bound, we randomly add new directions that correspond to “faces” of the

exact max-min-max correspondence. These directions are computed via a generalization of

the two-player direction rotation procedure.

In Online Appendix C, we present simulations where the equilibrium payoff correspon-

dence has a finite number of faces that are successfully discovered by the algorithm, so that

the sequence of approximations converges exactly to the equilibrium payoff correspondence.

We also solve a three-player risk-sharing game to show a new result of independent economic

interest, which is that formal insurance contracts between a subset of the players can lead

to lower payoffs for all players.

All of the aforementioned algorithms converge to equilibrium payoffs from the outside,

thus providing upper bounds. As a last topic, we show how our methodology can be adapted

produce a lower bound. In particular, we construct an algorithm that necessarily converges,

after finitely many steps, to a correspondence that strictly self-generates in every direction,

thus robustly certifying that payoffs in this correspondence can be attained in equilibrium.

A notable antecedent of our work is Abreu and Sannikov (2014) who studied repeated

games with two players, perfect monitoring, and public randomization. They proposed a

3www.benjaminbrooks.net/software.shtml
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distinct refinement of the APS algorithm, and our procedure does not reduce to theirs when

there is a single state. As mentioned above, they give a bound on the number of extreme

equilibrium payoffs, which is tighter than our bound (due to the specialization to repeated

games) but is based on the same geometry.

This paper supersedes our earlier work (Abreu, Brooks, and Sannikov, 2016), in which

we studied the same class of games but restricted to two players. Based on similar ideas,

we proposed a related but distinct algorithm, which also proceeds by iteratively modifying a

payoff tuple, one state at a time, to obtain a sequence of payoffs and corresponding bounds. In

contrast to the present work, that operator did not have bounded computational complexity

in the two-player case and did not apply to many-player games.

Another key reference is Judd, Yeltekin, and Conklin (2003), hereafter JYC, who pro-

posed the approximation of the APS operator by bounding payoffs in a fixed and finite set of

directions. While they wrote about repeated games, their methodology readily generalizes

to the class of stochastic games we consider.4 Key differences between the approaches are

that we use the max-min-max operator rather than the APS operator, we endogenize the

directions in order to identify faces, and we compute our operator exactly when there are

two players. We report runtime comparisons between the implementations of our algorithm

with our implementation of JYC for stochastic games. Preliminary simulations indicate that

our algorithm is significantly faster than that of JYC. We note that our approach makes

heavy use of perfect monitoring, whereas the JYC approach can be easily adapted to games

with imperfect public monitoring.

There are other lines of work on computing equilibria without public randomization (Berg

and Kitti, 2019) or with mixed strategies (Berg, 2019). There is also a large body of work

computing Markov perfect equilibria (Pakes and McGuire, 1994). Our methodology can be

used to bound payoffs in Markov equilibria, but it cannot be used to compute just the set

of Markov equilibrium payoffs. Renner and Scheidegger (2018) propose a machine learning

algorithm for approximating feasible payoffs in dynamic principal-agent problems, whose

efficacy is suggested by simulations. In contrast, our algorithms pertain to stochastic games,

and we show analytically that our procedure is guaranteed to converge to the equilibrium

payoff correspondence.

Finally, our algorithms exploit the linear structure of equilibria. Many of the concepts we

use are evocative of similar concepts in linear programming. The connection between linear

programming and dynamic programming is well known, so this is not altogether unexpected.

Online Appendix D studies the connection in detail. Our conclusion is that while there are

4Such an extension is done by Yeltekin, Cai, and Judd (2017). A related approach is taken by Sleet and
Yeltekin (2016), using what they call block correspondences instead of bounding in fixed directions.
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deep connections, but there are also fundamental differences because the minimization over

regimes makes our optimization program non-convex, so it cannot simply be reduced to a

linear program.

The rest of this paper is organized as follows. Section 2 describes the basic model and

background material from APS. Section 3 presents our algorithm and its key properties. Sec-

tion 4 studies implementation and examples when there are two players. Section 5 presents

the infinite extreme point example and studies implementation for many players. Section 6

adapts our methodology to bound equilibrium payoffs from below. Section 7 is a conclusion.

2 Setting and background

Players i = 1, . . . , N interact over infinitely many periods. There is a finite set of states S. If

the current state is s ∈ S, player i takes an action ai in a finite set Ai(s).
5 The set of action

profiles in state s is A(s) = ×Ni=1Ai(s). Player i’s flow utility from action profile a ∈ A(s)

is gi(a|s). The resulting probability that the next state is s′ is π(s′|a, s). We will henceforth

assume that each a is available in a single state and write gi(a) and π(s′|a).6 Players discount

future payoffs at the common rate δ ∈ (0, 1). Actions and the state are perfectly observable.

We will study the equilibrium payoff correspondence V : S → 2RN
, where V(s) is the set

of expected discounted payoffs that can be achieved in some pure-strategy subgame-perfect

Nash equilibrium with public randomization, when the initial state of the world is s. For a

formal definition of an equilibrium in this setting, see Mailath and Samuelson (2006, Sections

5.5 and 5.7), in particular Corollary 5.7.1.7

Subgame-perfection implies that any equilibrium payoff can be decomposed into the

discount-weighted sum of a flow payoff which is obtained in the first period and expected

continuation equilibrium payoffs from the second period onwards. The technique of APS

is to generalize this recursive relationship in a manner that is analogous to how the Bell-

man operator generalizes the recursive characterization of the value function in dynamic

programming. Explicitly, fix a compact-valued payoff correspondence W : S → 2RN
. Note

that the assumption of compactness of W is maintained throughout. The associated threat

tuple w(W) is

wi(W)(s) = min
{
wi|(wi, w−i) ∈W(s) for some w−i ∈ RN−1} .

5In general, we will use boldface to denote functions whose domain is the state space.
6This is without loss, since we could simply redefine an action to be the ordered pair (ai, s).
7Strictly speaking, the definition of an equilibrium in Mailath and Samuelson (2006) differs slightly from

the one which we are implicitly using. They assume that there is a probability distribution over the initial
state, while we define equilibrium payoffs conditional on the initial state.
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For an action profile a ∈ A(s), let

ui(a,W) = max
a′i

[
(1− δ)gi (a′i, a−i) + δ

∑
s′∈S

π (s′|a′i, a−i) wi(W)(s′)

]
.

We say that v is generated in state s by the action profile a ∈ A (s) and the correspondence

W if there exist w ∈W—meaning that w(·) is a selection from W(·)—such that

v = (1− δ)g(a) + δ
∑
s′∈S

π(s′|a)w(s′); (1)

(1− δ)gi(a) + δ
∑
s′∈S

π(s′|a)wi(s
′) ≥ ui(a,W) ∀ i = 1, . . . , N. (2)

This equation implicitly assumes that a deviation from a by player i will be punished by a

transition to the worst continuation equilibrium for the deviator, which results in a payoff

of wi(W)(s′) if the next state is s′. This is without loss due to perfect monitoring.

Let B (a,W) denote the set of payoffs that are generated by a ∈ A(s) and W, and let

B (W) (s) = co
(
∪a∈A(s)B (a,W)

)
, where co denotes the convex hull. It is a fact that B is

increasing in W and maps compact-valued correspondences to compact-valued correspon-

dences. We say that W is self-generating if W ⊆ B(W), i.e., W(s) ⊆ B(W)(s) for all

s ∈ S. APS’s arguments, extended to stochastic games, show that if W is bounded and

self-generating, then B(W) ⊆ V. These properties imply that V is the largest bounded

self-generating payoff correspondence.8 Moreover, the following algorithm can be used to

compute V: Let W0 be any correspondence that contains V, and generate the sequence

Wk = B
(
Wk−1) for k ≥ 1. Then ∩k≥0Wk = V. Moreover, if B(W0) ⊆ W0, then the

sequence is decreasing: Wk ⊆Wk−1 for all k > 0.

3 A refinement of the algorithm of APS

We now describe our refinement of the APS algorithm. This algorithm will similarly gen-

erate a sequence of payoff correspondences via iterative application of a new operator B̃.

This algorithm converges faster, as the operator B̃ generates smaller correspondences and

is significantly easier to compute than the APS operator B. Note that Online Appendix A

contains pseudocode for the algorithms developed over the next three sections.

8Note that a pure-strategy subgame-perfect equilibrium need not exist. Subgame-perfection requires that
the continuation equilibrium is an equilibrium after every history. Thus, an equilibrium exists in some state
if and only if an equilibrium exists in every state. As a result, V is either empty in all states or non-empty
in all states.
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3.1 Our operator

Preliminary to defining B̃, it is useful to reformulate the APS operator. Let Λ =
{
λ ∈ RN | ‖λ‖ = 1

}
denote the set of N -dimensional directions, endowed with the subspace topology. For each

λ ∈ Λ, s ∈ S, and a ∈ A(s), we define

xAPS (a, λ,W) = max {λ · v|v ∈ B(a,W)} ,

where our convention is that the max of an empty set is −∞. In addition, we say that an

action profile a is supportable (at W) if B(a,W) 6= ∅, so that xAPS(a, λ,W) is finite for

all λ. Let A(W)(s) be the set of supportable action profiles in state s. We further define

xAPS(s, λ,W) = maxa∈A(W)(s) x
APS(a, λ,W) to be the maximum level in the direction λ

that is attained by the APS operator, which again is −∞ if there are no supportable actions

in state s. Then

B(W)(s) = {v|λ · v ≤ xAPS(s, λ,W) ∀λ ∈ Λ}.

Note that B(W)(s) is empty if there are no supportable action profiles in state s. In addition,

as per Footnote 8, if W is empty in some state, then there are no continuation value profiles,

no action can be supported, and B(W) is empty in every state.

Our operator will be defined similarly in terms of bounding hyperplanes, but with tighter

bounds than xAPS. To motivate the bounds, let us briefly consider which payoffs would be

attainable in the absence of incentive constraints. In other words, what are the feasible

payoffs that can be generated using some strategy profile? In a repeated game, the answer

is simply the convex hull of the flow payoffs. In a stochastic game, things are more com-

plicated because of how action profiles influence the evolution of the state. For any fixed

welfare weights λ ∈ Λ, however, the problem of maximizing the λ-weighted sum of expected

discounted payoffs is simply a Markov decision problem. Blackwell (1965) showed that there

is a stationary solution, i.e., a selection of action profiles a ∈ A such that an optimal strategy

is to play a(s) whenever the state is s. Equivalently, the optimal strategy involves playing

an optimal action for one period, followed by recursively starting the optimal strategy over

in the next period. This strategy simultaneously attains the highest levels in all states. The

associated optimal levels x(s) are the unique solution to

x(s) = (1− δ)λ · g(a(s)) + δ
∑
s′∈S

π(s′|a(s))x(s′) (3)

for all s ∈ S.
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The situation is more complicated with incentive constraints, because it may not be

possible to attain the levels in (3) without giving some player an incentive to deviate. In

particular, it may be necessary to burn some surplus in some states in the direction λ in order

to give sufficiently large continuation values to deter deviations. Exactly how much surplus

needs to be burnt depends on the threat point and the shape of the frontier, which are things

we do not know until we actually compute V. We can, however, use an approximation W

that contains V to bound the amount of value burning required to enforce any action profile

a(s). At the same time, as we discussed in the introduction, there are cases where the APS

bound is also too generous, because of spuriously large continuation values in W.

These considerations motivate the hybrid approach that we now adopt, which is to use the

recursive methodology of Markov decision problems in some states and APS-style bounds

in other states. Holding fixed the actions played in the first period, we will select the

configuration of recursive or APS for each state in order to minimize the bound on payoffs,

thus ensuring that our approximation is not too generous.

To that end, let us define a policy to be a pair (a, r), where a ∈ A(W),9 and r : S →
{R,APS} is a regime (where the R stands for recursive). Let R denote the set of regimes.

For given λ and W, consider the system

y(s) =

(1− δ)λ · g(a(s)) + δ
∑

s′∈S π(s′|a(s))y(s′) if r(s) = R;

xAPS(a(s), λ,W) if r(s) = APS
(4)

for all s ∈ S. Standard arguments can be used to show (4) has a unique solution: given

y : S → R, let T (y, λ, a, r,W) be the tuple defined by

T (y, λ, a, r,W)(s) =

(1− δ)λ · g(a(s)) + δ
∑

s′∈S π(s′|a(s))y(s′) if r(s) = R;

xAPS(a(s), λ,W) if r(s) = APS.

Clearly, any y that satisfies (4) must be a fixed point of the operator T (·, λ, a, r,W). More-

over, this operator is a contraction of modulus δ in y, so that a fixed point exists and is

unique. We denote it by x(s, λ, a, r,W). We record some properties of T for future reference.

Lemma 1. Fix λ, W, a ∈ A(W), and r. As a function of y : S → R, T is

(L1.i) increasing;

(L1.ii) a contraction with modulus δ and hence has a unique fixed point y∗;

9Our focus is primarily on computing which payoffs can be generated, taking as a given which action
profiles are supportable. The computation of A(W) is a straightforward by-product of other necessary
calculations. See a discussion in Section 4.2.3.
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(L1.iii) if T (y) ≤ (≥)y then y∗ ≤ (≥)T (y).

Proof of Lemma 1.

(L1.i) This is immediate from positive linearity of T in y when r(s) = R and the fact

that it is independent of y when r(s) = APS.

(L1.ii) Let ‖·‖ denote the sup norm. Then

‖T (y, λ, a, r,W)− T (y′, λ, a, r,W)‖ = δ max
{s|r(s)=R}

∑
s′∈S

π(s′|a(s))|y(s′)− y′(s′)|

≤ δ‖y − y′‖

as desired. The rest of the result follows from the Banach fixed point theorem.

(L1.iii) If T (y, λ, a, r,W) ≤ (≥)y then from (L1.i), we conclude that the sequence yk

generated by iterative application of T starting with y0 = y is monotonically

decreasing (increasing) and, by (L1.ii), must converge to the unique fixed point y∗.

The result then follows.

The next key definition mirrors that of xAPS:

x(s, λ,W) = max
a∈A(W)

min
r∈R

x(s, λ, a, r,W). (5)

Finally, the operator B̃ is defined according to

B̃(W)(s) = {v|λ · v ≤ x(s, λ,W) ∀λ ∈ Λ}.

We refer to this as the max-min-max operator, since for each direction, we maximize over

action tuples, minimize over regimes, and maximize over APS payoffs. Because of the min-

imization over regimes, B̃ generates smaller correspondences than B. Furthermore, the

simultaneous determination of levels in states for which the R regime is specified collapses

multiple rounds of the APS operator into a single step.

We now verify that the operator B̃ satisfies all of the critical properties of the APS

operator, so that it can in fact be used to compute V:

Theorem 1 (The max-min-max operator). B̃ has the following properties:

(T1.i) B̃ is increasing in W, and if W is compact, then B̃ (W) is compact;
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(T1.ii) B̃ (W) ⊆ B (W), and if W ⊆ B̃ (W), then B̃(W) ⊆ V;

(T1.iii) V = B̃ (V);

(T1.iv) Fix a correspondence W̃0 that contains V. Define the sequence
{

W̃k
}∞
k=0

by W̃k =

B̃
(
W̃k−1

)
. Then V = ∩∞k=0W̃

k.

Remark 1. Recall that it is possible that no pure-strategy equilibria exist, and V(s) = ∅ for

all s. If this happens, then since the W̃k correspondences are closed and decreasing, there

must be some k at which W̃k(s) = ∅ for some s. In the next iteration, there will be no

supportable action profiles in any state, and W̃k+1 will be empty in every state, at which

point the algorithm converges. Theorem 1 and our subsequent results encompass the case

where payoff correspondences are empty and no payoffs can be generated, and our proofs

remain correct with the convention that the maximum of an empty set is −∞. The explicit

focus is, however, on the non-trivial case where W is non-empty valued.

Proof of Theorem 1.

(T1.i) It is clear that xAPS (a, λ,W) is increasing in W for every a ∈ A(W)(s) and λ.

Hence, if W′ ⊆ W, then for all (y, λ, a, r), where a ∈ A(W), T (y, λ, a, r,W) ≥
T (y, λ, a, r,W′), which immediately implies that the fixed point of T (·, λ, a, r,W)

is greater than the fixed point of T (·, λ, a, r,W′). Thus, x (s, λ, a, r,W) is increas-

ing in W. As a result, minr∈R x (s, λ, a, r,W), and x (s, λ,W) are also increasing

in W. If W is compact, then xAPS (a, λ,W) is bounded above for every λ. Thus,

B̃ (W) (s) is bounded and closed, being the intersection of closed half-spaces.

(T1.ii) Clearly, x (s, λ,W) ≤ xAPS (s, λ,W), which implies that B̃ is always contained in

B. Thus, if W ⊆ B̃(W), then W ⊆ B(W) and hence, by APS, B(W) ⊆ V.

Consequently, B̃(W) ⊆ V.

(T1.iii) From (T1.ii), it suffices to show that V ⊆ B̃(V), i.e., for all λ, x(s, λ,V) ≥
xAPS(s, λ,V). To that end, fix λ, and for all s, let a (s) be an action that maximizes

xAPS (a, λ,V) and let w(s′) be the associated continuation values as a function of

the next-period state s′. We will show that minr∈R x(s, λ, a, r,V) ≥ xAPS(s, λ,V),

so that x(s, λ,V) ≥ xAPS(s, λ,V), which implies the result. Since V = B(V),

xAPS(s, λ,V) ≥ λ · u for all u ∈ V(s′) for all s′. Since w(s′) ∈ V(s′) for all s′,

xAPS(s, λ,V) = (1− δ)λ · g(a(s)) + δ
∑
s′∈S

π(s′|a(s)λ ·w(s′)

≤ (1− δ)λ · g(a(s)) + δ
∑
s′∈S

π(s′|a(s)xAPS(s′, λ,V).
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Thus, if we let y(s) = xAPS(s, λ,V) for all s, then for any regimes r, T (y, λ, a, r,V) ≥
y (with equality if r(s) = APS and weak inequality if r(s) = R). By (L1.iii), we

conclude that y(s) = xAPS(s, λ,V) ≤ x(s, λ, a, r,V) = y∗(s), as required.

(T1.iv) (T1.ii) implies that W̃k ⊆ Wk, where the latter is the kth element of the APS

sequence starting from W̃0. Also, the fact that W̃0 contains V, (T1.i), and (T1.iii)

imply that V ⊆ W̃k. Thus, V ⊆ ∩kW̃k ⊆ ∩kWk = V.

Remark 2. Roughly, our definition of a policy (a, r) allows us to treat separately states

in which incentive constraints are slack from those in which they bind. When incentive

constraints are slack, optimal behavior is stationary until a constraint binds, payoffs are

defined recursively, and R is the optimal regime. When incentive constraints bind, value

burning is required to provide incentives and the minimal regime is necessarily APS. At the

fixed point (where W = V) and at the corresponding optimal policy in the direction λ, this

description is exactly correct: the recursive regimes are the most permissive and yield upper

bounds on attainable levels. This fundamental observation underlies the proof of (T1.iii).

However, the algorithm approaches the fixed point from the “outside,” i.e., V ⊆ W̃k, and

it is possible that recursion along the path of the algorithm yields lower levels than the

corresponding APS levels, since the latter may rely on spuriously generous continuation

payoffs. This motivates our requirement that the regimes are chosen to minimize levels. In

the next section, we show that this minimization reduces to simply setting the regime to R in

states for which this yields a level below that of APS. As we are dealing with a simultaneous

equation system, this test is modestly more complicated than it might appear at first.

Remark 3. B̃(W)(s) is the intersection of hyperplanes where the levels are given by x(s, ·,W).

While the former is necessarily a convex set, the latter is generally not a convex function,

so that x(s, ·,W) need not be the support function of B̃(W)(s). An example in which this

happens is presented in Section 4.3.1. Thus, one must be careful in applying intuition from

convex geometry to B̃ and the sets W̃k.

Remark 4. It is a straightforward consequence of (T1.iv) that the sequence W̃k converges

to V in the Hausdorff metric. In practice, we terminate the algorithm when the distance

between successive iterates falls below some threshold (which it must eventually, since the

sequence is Cauchy). The distance between iterates has no simple relationship with the

distance to V, and there is no guarantee that the final correspondence is close to the fixed

point. In Section 6, we adapt our algorithm to produce a sub-correspondence of V, which

can be used to bound the error in the approximation.
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The remainder of this section develops further properties of B̃ that make it especially

tractable for computation, namely, the state independence of the optimal policy and the

sufficiency of binding payoffs when the APS level is minimal.

3.2 State-independence of the optimal policy

The definition of x(s, λ,W) in (5) leaves open the possibility that the optimal policy in the

direction λ depends on s. We now show that there exists a policy that is simultaneously

optimal for all states, and we lay the foundations for a simple algorithm to compute it.

3.2.1 Minimal regimes

For notational economy, we shall temporarily suppress the dependence of x and other objects

on W, and simply write x(s, λ), etc. For a ∈ A(s) define

xR(a, λ, a, r) = (1− δ)λ · g(a) + δ
∑

s′
π(s′|a)x(s′, λ, a, r).

Given λ and a, we say that the regime r is minimal if for all s ∈ S, x(s, λ, a, r) =

minr′∈R x(s, λ, a, r′). In other words, they minimize the level in all states simultaneously. In

addition, given r, let r \ s be the regime that is the same as r in every state except s, i.e.,

we flip the regime in state s.

We now show that there exist minimal regimes. Moreover, there is a simple set of

inequalities that characterize when regimes are minimal. These inequalities will be central

to our implementations in Sections 4 and 5.

Lemma 2 (Minimal regimes). For all a ∈ A(W) and λ,

(L2.i) there exist minimal regimes;

(L2.ii) r is minimal if and only if for all s ∈ S,

x(s, λ, a, r) = min
{
xAPS(a(s), λ), xR(a(s), λ, a, r)

}
; (6)

(L2.iii) if (6) is violated for some s, then r is not minimal. Moreover, for all s′ ∈ S,

x(s′, λ, a, r \ s) ≤ x(s′, λ, a, r), with strict inequality in state s.

Proof of Lemma 2. These results follow directly from Lemma 1:

(L2.iii) If (6) is violated at s, then letting y = x(λ, a, r), we conclude that T (y, λ, a, r\s) ≤ y.

By (L1.iii), x(λ, a, r \ s) = y∗ ≤ T (y, λ, a, r \ s) ≤ y = x(λ, a, r), where the penultimate

inequality is strict by assumption in state s.
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(L2.ii) Only if follows from (L2.iii). For the if direction, suppose that r satisfies (6) for all

s. Then for any r′ ∈ R, it follows that y ≤ T (y, λ, a, r′), where y = x(λ, a, r). Then by

(L1.iii), y∗ = x(λ, a, r′) ≥ x(λ, a, r), so that r is indeed minimal.

(L2.i) Let r solve minr′∈R
∑

s∈S x(s, λ, a, r). We argue that r is minimal. Suppose not.

Then by (L2.ii), (6) is violated at some s ∈ S, and by (L2.iii),
∑

s′∈S x(s′, λ, a, r \ s) <∑
s′∈S x(s′, λ, a, r), a contradiction.

3.2.2 Maximal actions

We now extend these results to actions: as long as there are supportable action profiles in

every state, there exists a selection of action profiles that maximizes the level for all states

simultaneously, and maximal actions are characterized by a simple set of inequalities.

We will prove this result using an operator that is analogous to T but directly imposes

minimality. For y : S → R let

Tmin(y, λ, a)(s) = min

{
xAPS(a(s), λ), (1− δ)λ · g(a(s)) + δ

∑
s′∈S

π(s′|a(s))y(s′)

}
.

Lemma 3. Fix λ and a ∈ A(W). As a function of y : S → R, Tmin is

(L3.i) increasing;

(L3.ii) a contraction with modulus δ, and hence has a unique fixed point y∗;

(L3.iii) if Tmin(y) ≤ (≥)y then y∗ ≤ (≥)Tmin(y);

Proof of Lemma 3. The proof is identical to that of Lemma 1, replacing T with Tmin.

Now, let us define x(s, λ, a) = minr∈R x(s, λ, a, r) to be the minimal levels associated

with the action tuple a ∈ A(W). The definition of x(s, λ) in (5) implies that x(s, λ) =

maxa∈A(W) x(s, λ, a). For a given λ, we say that a is maximal if for all s ∈ S, x(s, λ) =

x(s, λ, a), i.e., a attains the max-min-max level in all states simultaneously. Also define

xR(a, λ, a) = (1− δ)λ · g(a) + δ
∑
s′∈S

π(s′|a)x(s′, λ, a).

Finally, for a ∈ A, s ∈ S, and a ∈ A(s), let us define the substituted action tuple a\ (s, a) ∈
A to be the action a in state s and a(s′) in each state s′ 6= s.

Lemma 4 (Maximal actions). Suppose that A(W) is non-empty valued. Then for all λ,
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(L4.i) there exist maximal actions;

(L4.ii) a ∈ A(W) is maximal if and only if for all s ∈ S and a ∈ A(W)(s),

x(s, λ, a) ≥ min
{
xAPS(a, λ), xR(a, λ, a)

}
, (7)

(L4.iii) if (7) is violated for some s ∈ S and a ∈ A(W)(s), then a is not maximal.

Moreover, for all s′ ∈ S, x(s′, λ, a \ (s, a)) ≥ x(s′, λ, a), with strict inequality in

state s.

Proof of Lemma 4. The proof mirrors that of Lemma 2, and follows directly from Lemma 3:

(L4.iii) If (7) is violated at (s, a), then letting y = x(λ, a), we conclude that Tmin(y, λ, a \
(s, a)) ≥ y. By (L3.iii), x(λ, a \ (s, a)) = y∗ ≥ Tmin(y, λ, a \ (s, a)) ≥ y = x(λ, a),

where the penultimate inequality is strict by assumption, in state s.

(L4.ii) Only if follows from (L4.iii). For the if direction, suppose that a satisfies (7) for all

s and a ∈ A(W)(s). Then for any a′ ∈ A(W) it follows that y ≥ Tmin(y, λ, a′)

where y = x(λ, a). Then by (L3.iii), y∗ = x(λ, a′) ≤ x(λ, a), so that a is indeed

maximal.

(L4.i) Let a solve maxa′∈A(W)

∑
s∈S x(s, λ, a′). We argue that a is maximal. Suppose not.

Then by (L4.ii), (7) is violated at some s ∈ S and a ∈ A(W)(s) and by (L4.iii)∑
s′∈S x(s′, λ, a \ (s, a)) >

∑
s′∈S x(s′, λ, a), a contradiction.

To summarize, there exits a state-independent optimal policy. This is extremely useful

for computation, since it means we can solve for optimal levels in all states simultaneously.

3.3 The sufficiency of binding payoffs

In the discussion around Theorem 1, we identified the APS regime with a situation in which

incentive constraints bind, so that value burning is required to deter deviations. There is

nothing in the definition of xAPS, however, that requires that incentive constraints bind,

and we have left open the possibility that the APS regime is minimal even though incentive

constraints are slack. While this may happen, it does not occur in equilibrium or along the

sequence W̃k, as long as B(W̃0) ⊆ W̃0. This fact is immensely useful for computation, since

it means that we do not need to compute optimal APS levels in all directions (which would

amount to computing the APS operator itself). Instead, we can just compute the optimal

APS level when incentive constraints bind.
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We now develop this result formally. Let us reintroduce the payoff correspondence W as

an argument in optimal levels. For any s ∈ S and a ∈ A(W)(s), define

x̂APS (a, λ,W) = max {λ · w | w ∈ B (a,W) and ∃ i s.t. (2) holds as equality} . (8)

We refer to the difference

γ(a, λ,W) = xAPS(a, λ,W)− x̂APS(a, λ,W)

as the APS gap.10 We shall see that for any λ and a ∈ A(W), if γ(a(s), λ,W) is strictly

positive in state s, then R is a minimal regime in state s. On the other hand, if γ(a(s), λ,W)

is zero, then by definition we can restrict attention to APS payoffs for which at least one

player’s incentive constraint binds.

To prove this result, we need two intermediate lemmas. We say that the APS operator B

sub-generates at W in the direction λ if for all s ∈ S, xAPS(s, λ,W) ≤ max{λ·w|w ∈W(s)},
and B sub-generates at W if B(W) ⊆W. These notions extend to B̃ in the obvious way.

Lemma 5. Suppose that B sub-generates at W in the direction λ. Then for any a ∈ A(W)

and s, if γ(a(s), λ,W) > 0, then

xAPS(a(s), λ,W) ≥ xR(a(s), λ, a,W) = x(s, λ, a,W). (9)

Moreover, there exist minimal regimes such that r(s) = R for all s with γ(a(s), λ,W) > 0.

Proof of Lemma 5. Suppose that γ (a (s) , λ,W) > 0. Then any maximal continuation val-

ues in W in the direction λ, denoted w, must be incentive compatible for a(s), and

xAPS (a (s) , λ,W) = (1− δ)λ · g (a (s)) + δ
∑
s′∈S

π (s′|a (s))λ ·w (s′) .

Sub-generation and the definition of x imply that for all s′, λ ·w(s′) ≥ xAPS (a (s′) , λ,W) ≥
x (s′, λ,W). Hence,

xAPS (a (s) , λ,W) ≥ (1− δ)λ · g (a (s)) + δ
∑
s′∈S

π (s′|a (s))x(s′, λ,W)

≥ (1− δ)λ · g (a (s)) + δ
∑
s′∈S

π (s′|a (s))x(s′, λ, a,W) = xR (a (s) , λ, a,W)

10Note that if a is supportable, then there must exist a payoff where (2) holds as an equality, so that x̂APS

is finite. This follows from the definition of ui(a,W), which is at least the payoff obtained by playing a with
the worst continuation values in W. Thus, it cannot be that ui(a,W) is strictly below every payoff that
satisfies (1) for some w ∈W.
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as desired.

Finally, suppose r is minimal and γ(a(s), λ,W) > 0. If xAPS(a(s), λ,W) > xR(a(s), λ, a,W),

then r(s) = R. Otherwise, (9) implies that xAPS(a(s), λ,W) = xR(a(s), λ, a,W). Thus, if

we set r′(s) = R for all states with γ(a(s), λ,W) > 0 and r′(s′) = r(s′) otherwise, then

x(·, λ, a, r,W) is a fixed point of T (·, λ, a, r′,W), so that r′ satisfies (6) and is minimal.

Remark 5. For the remainder of our analysis, we work with payoff correspondences at which

B sub-generates. We shall therefore without loss restrict attention to minimal regimes that

satisfy the selection of Lemma 5, i.e., ones for which r(s) = R whenever the APS gap is

positive. This allows us to avoid the computation of non-binding APS payoffs, which would

basically entail computing all of B(W), whereas the sign of the APS gap is automatically

computed in the process of finding the optimal binding APS payoffs. This is discussed further

in Section 4.2.3.

Note that monotonicity of B implies that if B sub-generates at W, then it will sub-

generate at B(W) as well. It does not follow that B will sub-generate at other sub-

correspondences of W. However:

Lemma 6. If B̃ sub-generates at W, then B sub-generates at B̃(W).

Proof of Lemma 6. Towards a contradiction, suppose that some action profile a ∈ A(W)(s),

with continuation values w ∈ B̃(W), generates a payoff outside of B̃(W). Then for some λ,

x(s, λ,W) < xAPS(a, λ, B̃(W)) = λ ·

(
(1− δ)g(a) + δ

∑
s′∈S

π(s′|a)w(s′)

)
≤ (1− δ)λ · g(a) + δ

∑
s′∈S

π(s′|a)x(s′, λ,W),

where the last inequality holds because λ ·w(s′) ≤ x(s′, λ,W), since w(s′) ∈ B̃(W)(s′). The

right-hand side of this inequality equals xR(a, λ, a,W) for any a ∈ A(W) that is maximal in

the direction λ (given W). Since B̃(W) ⊆W, we know that xAPS(s, λ,W) > x(s, λ,W) as

well. That is, x(s, λ, a,W) < min{xAPS(a, λ,W), xR(a, λ, a,W)}, contradicting (L4.ii).

This leads to the following result about the sequence generated by B̃:

Proposition 1 (Sufficiency of binding payoffs). Let W̃k be the sequence from (T1.iv). Sup-

pose B sub-generates at W̃0. Then for any k ≥ 0, B sub-generates at W̃k. Hence, for

any λ and a ∈ A(W̃k), there exist minimal regimes r such that if γ(a(s), λ,W̃k) > 0, then

r(s) = R.
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Proof of Proposition 1. By assumption, B(W̃0) ⊆ W̃0. Hence, B̃(W̃0) ⊆ W̃0. Since B̃ is

increasing (T1.i), it follows that B̃(W̃k) ⊆ W̃k for all k ≥ 0. By Lemma 6, B(W̃k) ⊆ W̃k

for all k ≥ 0. The second part of the proposition then follows from Lemma 5.

3.4 Computing x(s, λ,W)

In the next sections, we use the characterization of optimal policies and the sufficiency of

binding payoffs to construct simple algorithms for computing B̃. These algorithms depend on

a subroutine that computes x(λ,W). We have already referenced pieces of this routine, but

we now synthesize these results into a unified algorithm, together with various simplifications

that are possible when B sub-generates at W.

The computation of x(λ,W) consists of an outer routine, in which we maximize over

a, and an inner routine, where we minimize over r. For the inner routine (Algorithm 1 in

Online Appendix A), we use (L2.ii), which says that the regimes r are not minimal if and

only if (6) is violated in some state s, and (L2.iii), which says that r\s has lower levels in all

states. This suggests a simple iterative procedure: Starting from any r, check for violations

of (6). If there are none, then r is minimal. Otherwise, replace r with r \ s, where s is

associated with a violation of (6), and continue. By (L2.iii), The levels decrease at each

substitution, so the regimes must converge after at most |R| substitutions.11

This routine nominally requires us to compute xAPS(a, λ,W) to check (6). But under the

hypothesis that B sub-generates at W, we can use Lemma 5 to simplify this process: In any

state where γ(a(s), λ,W) > 0, the minimal regime can be taken to be recursive. Otherwise,

by definition xAPS = x̂APS, so we can use binding payoffs in (6).

The outer routine (Algorithm 2) is analogous, with actions instead of regimes: Starting

from some a, check for violations of (7). If there are none, then by (L4.ii), a is maximal.

Otherwise, replace a with a \ (s, a) where (s, a) is associated with a violation, compute new

minimal regimes, and continue. By (L4.iii), the levels increase at every substitution, so the

actions converge in at most |A| steps.

As with regimes, we can simplify the computation using Lemma 5: if γ(a, λ,W) > 0,

then Lemma 5 implies that the minimal regime can taken to be recursive. Lemma 3 then

implies that x(s, λ, a\(s, a),W) > x(s, λ, a,W) if and only if xR(a, λ, a,W) > x(s, λ, a,W).

Otherwise, binding APS payoffs are maximal, and we can replace xAPS with x̂APS in (7).

Thus, we are able to compute an optimal policy and the optimal levels in each direction

using only binding payoffs and the sign of the APS gap. We summarize this discussion in

11In fact, since the levels are decreasing, it is not hard to see that if xR(a(s), λ,a, r,W) ≤
xAPS(a(s), λ,W), the recursive regime will be minimal at all subsequent rounds. Thus, a switch from
APS to R is irreversible, and the maximum number of regime substitutions is 2|S|.
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the following result:

Proposition 2. Suppose that A(W) is non-empty valued and B sub-generates at W. Then

the preceding algorithm converges to an optimal policy in at most |A||R| steps.

Remark 6. Given a policy (a, r), there may be multiple action substitutions that lead to

higher levels or regime substitutions which lead to lower levels. The arguments above shows

that the procedure is order independent, and it will converge to an optimal policy as long at

least one improving substitution is implemented at each round. The pseudocode in Online

Appendix A makes a substitution in each state where there is an improvement, although it

does not specify how to select from multiple improving substitutions in a given state.

By the discussion preceding Proposition 2, we obtain a refinement of (L2.ii) and (L4.ii),

which we record for future reference:

Lemma 7. Suppose that B sub-generates at W in the direction λ, and fix a ∈ A(W). The

regimes r are minimal for (λ, a) if and only if

x(s, λ, a, r,W) =

min
{
x̂APS(a(s), λ,W), xR(a(s), λ, a, r,W)

}
if γ(a, λ,W) = 0;

xR(a(s), λ, a, r,W) if γ(a(s), λ,W) > 0.

(10)

Also, a is optimal if and only if for all s ∈ S and a ∈ A(W)(s),

x(s, λ, a,W) ≥

min
{
x̂APS(a, λ,W), xR(a, λ, a,W)

}
if γ(a, λ,W) = 0;

xR(a, λ, a,W) if γ(a, λ,W) > 0.
(11)

3.5 Optimal payoffs

Our analysis thus far has simplified matters by focusing on optimal levels and suppressing

the payoffs, either APS or recursive, that attain these levels. This perspective is useful

when computing the bound in a single direction, but it is insufficient for understanding how

x(s, λ,W) changes as we vary λ. As noted in Remark 3, x(s, λ,W) may be non-convex in λ,

so that the payoffs that attain the optimal level need not be elements of B̃(W). Nonetheless,

they turn out to be an essential part of our analysis. We re-introduce payoffs and establish

basic results that will be used in the following sections. To do so, we will enrich the regimes

to include information on which payoff is used when the regime is APS (in which case we

presume that incentive constraints bind, per the hypothesis that B sub-generates at W and

Lemma 5).
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Given W and a ∈ A(W)(s), we define

C (a,W) = ext {v|v ∈ B(a,W) and (2) binds for some i} ,

where extX denotes the set of extreme points of the setX. Thus, for every λ, x̂APS(a, λ,W) =

max{λ · v|v ∈ C(a,W)}. For any a ∈ A(W), denote by P(a,W) the set of selections

p(s) ∈ {R} ∪ C(a(s),W). Thus, p encodes whether the regime is recursive or APS, and a

choice of binding payoff if the regime is APS. Given a tuple of payoffs u and a ∈ A(s), let

uR(a,u) = (1− δ)g(a) + δ
∑
s′∈S

π(s′|a)u(s′).

Next, we refer to a triple (s, a, p) with a ∈ A(W)(s) and p ∈ {R}∪C(a,W) as a substitution.

Given a substitution (s, a, p), let u(s, a, p,u) = uR(a,u) if p = R, and u(s, a, p,u) = p if

p ∈ C(a,W). A pair (a,p) with p ∈ P(a,W) induces a tuple of payoffs u that solve the

recursive system

u(s) = u(s, a(s),p(s),u) (12)

for all s ∈ S. Note that (12) has a unique solution, by analogous arguments as for (L1.ii).

We now explain how to translate an optimal policy into a corresponding pair and pay-

offs. Fix λ and a ∈ A(W). We maintain that B sub-generates at W, so that there exist

minimal r satisfying the selection of Lemma 5, i.e., r(s) = APS only if xAPS(a(s), λ,W) =

x̂APS(a(s), λ,W). We say that p ∈ P(a,W) is min-max for (λ, a) if for such minimal

regimes r, p(s) = R if r(s) = R, and λ · p(s) = xAPS(a(s), λ,W) = x̂APS(a(s), λ,W) oth-

erwise. In addition, the pair (a,p) is optimal for λ if a is maximal for λ and p is min-max

for (λ, a). Finally, we say that the payoffs u are optimal for λ if they are induced by a pair

that is optimal for λ.

We next establish that optimal pairs exist and attain the optimal level:

Lemma 8. Fix λ and W, and suppose that B sub-generates at W. Then for all a ∈ A(W),

there exists a p ∈ P(a,W) that is min-max for (λ, a), and x(λ, a,W) = λ · u where u is

induced by (a,p). As a result, if A(W) is non-empty valued, then there exists a pair (a,p)

that is optimal for λ, and for any payoffs u that are optimal for λ, x(s, λ,W) = λ · u.

Proof of Lemma 8. The existence of a min-max p is immediate from the preceding discus-

sion. Let u denote the payoffs induced by (a,p). From the definition of a min-max p, it

follows directly that if p(s) 6= R, then λ · u(s) = x̂APS(a(s), λ,W) = x(s, λ, a,W). And if

r(s) = p(s) = R, then u(s) = uR(a(s),u). A routine calculation shows that λ ·u is the fixed
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point of T (·, λ, a, r,W), so that the minimal levels are attained. Finally, when a are optimal

actions, these levels must coincide with x(s, λ,W).

We next state optimality conditions for a pair (a,p) that are analogous to (10) and (11),

which will allow us to work directly with pairs rather than policies in computing B̃(W).

Lemma 9. Suppose that B sub-generates at W, and fix λ, a ∈ A(W), and p ∈ P(a,W),

and let u be induced by (a,p). Then p is min-max for (λ, a) if and only if for all s:

λ · u(s) = min
{

max {λ · v|v ∈ C(a(s),W)} , λ · uR(a(s),u)
}

if γ(a(s), λ,W) = 0, and p(s) = R if γ(a(s), λ,W) > 0 (so that u(s) = uR(a(s),u)).

Moreover, (a,p) is optimal for λ if and only if: p is min-max and for all s and a ∈ A(W)(s),

λ · u(s) ≥

min
{

max {λ · v|v ∈ C(a,W)} , λ · uR(a,u)
}

if γ(a, λ,W) = 0;

λ · uR(a,u) if γ(a, λ,W) > 0.

Proof of Lemma 9. This follows from Lemmas 7 and 8, with the observation that x(s, λ, a) =

λ · u(s) for the payoffs u induced by (a,p), and that xR(a, λ, a) = λ · uR(a,u).

Remark 7. The algorithm of Proposition 2 is easily adapted to directly compute an optimal

pair. Each policy (a, r) satisfying the selection of Lemma 5 can be identified with an equiv-

alent pair (a,p), where p(s) = R if r(s) = R and otherwise p(s) is a highest binding payoff

for a(s). It is immediate that the induced payoffs u satisfy λ · u(s) = x(s, λ, a, r,W) for all

s. In iterating over pairs, just as with policies, there is an inner min-maximization over p

and an outer maximization over a. The computation of the APS gap remains the same (and

we will comment below on how to do this efficiently). But when comparing the recursive

and binding APS levels to test for an improvement, instead of using xR(a, λ, a, r,W) and

x̂APS(a, λ,W), we use λ · uR(a,u) and λ · v, where v is a highest binding payoff. Starting

from (a,p) where p(s) is recursive or maximal in C(a,W), the computed sequence of pairs

corresponds to a sequence of policies generated by the algorithm of Proposition 2, as long as

ties are broken the same way (cf. Remark 6).

4 Two players:

Further implications and implementation

We now specialize to two-player games which, as we shall see, have an especially simple struc-

ture: the number of extreme equilibrium payoffs is bounded, B̃ has bounded computational
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complexity, and it can be computed via a simple procedure.

4.1 The complexity of V

We first establish a bound on the number of optimal pairs.

Lemma 10. If N = 2 and W is convex valued, then |C(a,W)| ≤ 4, and the number of

pairs is at most

L = 5|S| ×s∈S |A(s)|. (13)

Proof of Lemma 10. Recall the definition of C(a,W) and condition (2). If w is a feasible

and incentive compatible expected continuation value for which player i’s incentive constraint

binds, then wi = ui(a,W). The set of such points is either empty, a singleton, or it has

at most two extreme points. Thus, |C(a,W)| ≤ 4. Finally, each optimal payoff tuple

is associated with some a ∈ A(W) and p ∈ P(a,W). But by the preceding argument,

|C(a(s),W)| ≤ 4, so |P(a,W)| ≤ 5|S|. The bound immediately follows.

We immediately obtain a bound on the complexity of V, which generalizes an analogous

result of Abreu and Sannikov (2014) for repeated games:

Corollary 1. If N = 2, then V has at most L extreme points.

Proof of Corollary 1. The proof of (T1.iii) shows that x(s, λ,V) is the support function of

V. Since there are at most L pairs, x(s, λ,V) can have at most L linear segments. As a

result, V has at most L extreme points.

Note that Lemma 10 does not immediately yield a bound on the complexity of W̃k. The

fact that these correspondences have bounded complexity will, however, be proven using the

computational procedure we describe next.

4.2 Implementation with two players

Under the hypothesis that B sub-generates at W, there is a simple procedure to compute

B̃(W), which consists of iterative application of two subroutines. Starting from an optimal

pair for some initial direction, we compute a set of clockwise rotations of the direction for

which that pair remains optimal. We then rotate the direction of optimization clockwise as

far as we can, subject to the incumbent pair remaining optimal, and compute the pair that

would become optimal if the direction were to rotate further by a small amount. We then

continue iteratively: compute a new range of directions, rotate, and re-optimize. The main

23



result for this section, Theorem 2, shows that this procedure maps out the entire frontier of

B̃(W) in a bounded number of steps.

The key step in the algorithm is to compute a range of directions for which an optimal

pair remains optimal. We will show that a suitably chosen optimal pair can only cease to be

optimal at what we call a test direction. These directions are identified with the substitutions

of either actions or regimes that are used in the optimization routines of Proposition 2 and

Remark 7. Specifically, the test directions corresponding to a substitution are the critical

directions at which that substitution would leave the level unchanged. Proposition 3 below

establishes two fundamental results: First, except when B̃(W) is degenerate, a test direction

always exists. Second, the incumbent optimal pair remains optimal for all directions between

the initial direction and the “shallowest” test direction, i.e., the test direction with the

smallest clockwise angle of rotation from the initial direction.

This high-level summary neglects two complications that are dealt with in the following

pages. First, we will impose a refinement on the test directions considered by our algorithm

that we call legitimacy. This condition is used to weed out some spurious test directions

at which the optimal pair would not change. The legitimacy condition can, however, be

dropped without affecting our results on convergence and computational complexity.

A more substantive issue is what is meant by a “suitably chosen optimal pair.” The test

direction methodology requires us to start from an optimal pair that is robust, in the sense

that it remains optimal for small clockwise perturbations of the direction. Proposition 4

characterizes a procedure called lexicographic optimization, which is guaranteed to produce

a robustly optimal pair for any direction.

Thus, Propositions 3 and 4 establish three results that are used to prove Theorem 2:

Given a robustly optimal pair, there exists a legitimate test direction, and the incumbent

pair remains optimal to the next shallowest legitimate test direction (Proposition 3). More-

over, for any direction, there exists a robustly optimal pair and a method to compute it

(Proposition 4). As a result, iterative application of direction rotation and optimization will

necessarily identify an optimal pair for every direction.

4.2.1 Rotating the direction clockwise

We now proceed formally. For rotating the direction, we will work with pairs that satisfy

a mild refinement: A pair (a,p) with induced payoffs u is canonical if p(s) = R whenever

uR(a(s),u) ∈ C(a,W). In other words, if a binding payoff is exactly equal to the recursive

payoff, then we break ties in favor of the recursive regime. In this situation, recursive is

“canonically” minimal in the sense that it generates the lowest level in all directions, as

the recursive payoff is also an APS payoff. (Note, however, that p in a canonical pair
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need not be min-max, nor does the definition depend on the direction of optimization). It is

immediate that for any optimal pair, there is another optimal pair with the same payoffs that

is canonical, which is obtained by switching the regime to r whenever p(s) = uR(a(s),u):

Lemma 11. If (a,p) is optimal for λ and induces u, then there exists a p′ ∈ P(a,W) such

that (a,p′) is optimal for λ, induces u, and is canonical.

Now, fix a payoff tuple u and substitution (s, a, p), where a ∈ A(W)(s) and p ∈ {R} ∪
C(a,W). Recall that u(s, a, p,u) is equal to p if p ∈ C(a,W) and is equal to uR(a,u) if

p = R. We say that λ′ is test direction for (s, a, p) at u if u(s, a, p,u) 6= u(s) and

λ′ · (u(s, a, p,u)− u(s)) = 0. (14)

In other words, λ′ is normal to the direction in which the substitution moves payoffs. Fur-

thermore, we say that (s, a, p) and a corresponding test direction λ′ are legitimate if

λ′ · u(s, a, p,u) ≤ min {λ′ · uR(s, a, p,u), xAPS(a, λ,W)
}
.

We note for future reference that the number of test directions is bounded. For there are at

most L pairs, and the number of substitutions is at most

M = 5
∑
s∈S

|A(s)|.

Moreover, each pair and substitution has at most two associated test directions that solve

(14). As a result, there are at most 2LM test directions.

Next, let us define [λ, λ′] to be the closed arc of directions obtained by moving clockwise

from λ to λ′. We extend this convention to open and half-closed arcs in the obvious way.

We say that a pair (a,p) is robustly optimal at λ if there exists λ′ 6= λ such that (a,p)

is optimal for all directions in [λ, λ′]. A payoff u is robustly optimal if it is induced by a

robustly optimal pair.

The following proposition characterizes the search for shallowest legitimate test directions

and their relationship with robustly optimal pairs.

Proposition 3 (Test directions). Suppose that N = 2 and that B sub-generates at W.

Suppose further that (a,p) is robustly optimal at λ and induces u. Then either u is optimal

for all directions, or there exists a legitimate test direction at u that is not equal to λ.

Moreover, if λ′ 6= λ is the shallowest test direction and (a,p) is canonical, then (a,p) is

optimal for all directions in [λ, λ′].
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We now prove Proposition 3. Note that the remaining results of this section all maintain

the implicit hypotheses that B sub-generates at W, so that binding payoffs are sufficient,

and that N = 2. We first record a simple technical result.

Lemma 12. For each (a,p), the set of directions in which p is min-max for a is closed, and

the set of directions in which (a,p) is optimal is closed. For each u, the set of directions in

which u is optimal is closed.

Proof of Lemma 12. This is a consequence of Lemma 9 and the fact that γ, x̂APS, and xR

are all continuous in the direction. As a result, if (a,p) satisfies either the min-max or

optimality conditions of Lemma 9 along a convergent sequence of directions, then it also

satisfies them in the limit. Finally, u is optimal on the union of the finitely many closed sets

for which pairs that induce u are optimal.

The next two lemmas establish the first part of Proposition 3.

Lemma 13. If u and u′ 6= u are both optimal at some direction λ′, then λ′ is a legitimate

test direction at u.

Proof of Lemma 13. Let (a′,p′) be an optimal pair in the direction λ′ that induces u′. It

must be that u(s, a′(s),p′(s),u) 6= u(s) for some s. Otherwise, u is a solution to (12) for

(a′,p′), and uniqueness of the solution would imply that u = u′, a contradiction. As a result,

λ′ is a test direction for the substitution (s, a′(s),p′(s)). Moreover, λ′ · u(s, a′(s),p′(s),u) =

λ′ · u′(s) for all s, so that legitimacy follows from the optimality conditions for (a′,p′).

Lemma 14. Suppose that u is robustly optimal at λ and is not optimal at λ̂ 6= λ. Then

there is a legitimate test direction in (λ, λ̂).

Proof of Lemma 14. By Lemma 12, the set of directions at which u is optimal is closed, so

that there is a largest closed arc [λ, λ′] on which u is optimal. We will show that there exists

u′ 6= u that is optimal at λ′, so the result follows from Lemma 13.

By assumption, u is not optimal at λ̂, and since u is robustly optimal at λ, we conclude

that λ′ ∈ (λ, λ̂). The definition of λ′ then implies that there is a sequence of directions in

(λ′, λ̂] converging to λ′ at which u is not optimal. Since there is an optimal pair for every

direction (Lemma 8) and only finitely many pairs (Lemma 10), there must be a pair (a′,p′)

which induces payoffs u′ 6= u, such that (a′,p′) is optimal for directions arbitrarily close to

λ′. Lemma 12 then implies that (a′,p′) and u′ are also optimal at λ′.

The next lemma is used to prove the second part of Proposition 3.
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Lemma 15. Suppose that (a,p) is robustly optimal at λ and induces u, and that λ′ 6= λ is

the shallowest legitimate test direction at u. If (a,p) is canonical, then it is optimal for all

directions in [λ, λ′].

Proof of Lemma 15. The proof consists of three steps.

Step 1: u is optimal for all directions in (λ, λ′). If not, then there is a λ̂ ∈ (λ, λ′) at

which it is not optimal, and Lemma 14 then implies that there is a legitimate test direction

in (λ, λ̂), which contradicts the hypothesis that λ′ is shallowest.

Step 2: If (a,p) is canonical and is optimal at λ̂ ∈ (λ, λ′), then there is a closed neigh-

borhood of λ̂ on which (a,p) is optimal.

By Step 1 and the fact that (a,p) induces u, (a,p) is optimal in a neighborhood of λ̂

if and only if p is min-max for a in this neighborhood. The following two cases establish

that for every s, there is a neighborhood of λ̂ on which the min-max condition in Lemma

9 is satisfied. Thus, p is min-max on the intersection of these finitely many neighborhoods,

which, together with Lemma 12, implies the result.

Case 1: p(s) 6= R. Then for all v ∈ C(a(s),W) \ {p(s)}, it must be that λ̂ · v < λ̂ · p(s).

Otherwise p(s) would not be maximal or, if there is a tie for maximal payoff, then Lemma 13

implies that λ̂ is a legitimate test direction, contradicting the hypothesis that λ′ is shallowest.

Thus, there is a neighborhood of λ̂ for which p(s) is the highest binding APS payoff. Next,

since (a,p) is canonical, it must be that uR(a(s),u) 6= p(s).12 Moreover, it must be that

λ̂ · uR(a(s),u) > λ̂ ·p(s), for otherwise λ̂ would again be a legitimate test direction. Finally,

if there are directions arbitrarily close to λ̂ for which the APS gap is positive, then Lemma

5 implies that λ̂ · uR(a(s),u) ≤ xAPS(λ̂,W) for λ̂ arbitrarily close to λ̂. Continuity of xAPS

then implies that λ̂·uR(a(s),u) ≤ xAPS(λ̂,W) = λ̂·p(s), again a contradiction. We conclude

that there is a neighborhood of λ̂ for which uR(a(s),u) is strictly above p(s).

Case 2: p(s) = R. If γ(a(s), λ̂,W) > 0, then continuity of the APS gap implies that

p(s) = R is minimal for a neighborhood of λ̂. Otherwise, the APS gap is zero and there is a

maximal APS payoff at λ̂ that is binding. If x̂APS(λ̂,W) > λ̂ · u(s), then again, continuity

implies that the recursive regime is minimal in a neighborhood of λ̂. If x̂APS(λ̂,W) = λ̂·u(s),

then λ̂ ·v = λ̂ ·u(s) for some maximal v ∈ C(a(s),W). If u(s) 6= v, then λ̂ is a legitimate test

direction corresponding to the substitution (s, a(s), v), which contradicts λ′ being shallowest.

Otherwise, it must be that u(s) = v. As a result, the recursive payoff is also an APS payoff,

12This is the only step in the argument that uses the hypothesis (a,p) is canonical. Without this hypoth-
esis, it could be that p(s) 6= R and p(s) = u(s) = uR(a(s),u). Hence, the recursive regime is minimal for

all directions, but the recursive and APS regimes happen to tie at λ̂. As the direction rotates, the recursive
regime may become uniquely minimal, because the APS gap becomes positive. This need not happen at a
test direction. Instead of selecting canonical pairs, we could have included additional test directions when
the APS gap switches sign. These are the normals to the non-binding APS frontier at a binding payoff.
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so that p(s) = R is min-max for a in all directions.

Step 3: Let [λ, λ] be a largest closed arc in [λ, λ′] on which (a,p) is optimal, which by

hypothesis is non-empty. If λ 6= λ′, then Step 2 with λ̂ = λ implies that there is a closed

neighborhood of λ, denoted U , on which (a,p) is optimal. Then (a,p) is optimal on [λ, λ]∪U ,

which is a strict superset of [λ, λ], a contradiction. We similarly conclude that λ = λ, so

that (a,p) is optimal for all directions in [λ, λ′].

Proof of Proposition 3. The proposition follows directly from Lemmas 14 and 15.

4.2.2 Finding a robustly optimal pair

The last task is to find a robustly optimal pair and payoffs in a direction λ. This is ac-

complished with a procedure that we refer to as lexicographic optimization: Starting from

(a,p), we optimize according to the procedure of Proposition 2, using payoffs as described

in Remark 7, except that in ranking any pair of payoffs v and v′, we use the lexicographic

ordering, whereby a payoff v is greater than v′ if λ ·v > λ ·v′ or if λ ·v = λ ·v′ and λ̃ ·v > λ̃ ·v′,
where λ̃ is equal to λ rotated 90 degrees clockwise. In this case, we write v >λ v

′. Note

that the use of the lexicographic order only affects how ties are broken in the algorithm (cf.

Remark 6). In particular, instead of using any highest payoff in C(a,W), we use the lexi-

cographically highest, and when the APS and recursive payoffs are tied, we select whichever

is lexicographically minimal. In addition, we break ties in favor of the recursive regime if

the APS gap is zero but would become strictly positive for small clockwise rotations: In

particular, wherever the condition γ(a, λ,W) > 0 was used previously, we now use the con-

dition that there exists a λ′ 6= λ such that γ(a, λ′′,W) > 0 for all λ′′ ∈ (λ, λ′]. In this case,

we say that the APS gap for a is lexicographically positive at λ′. (Note that continuity of

γ in λ implies that the APS gap is lexicographically positive whenever it is positive.) This

procedure is fully described in Algorithms 4 and 5 in Online Appendix A.

The following proposition characterizes lexicographic optimization and, as a corollary,

shows that a robustly optimal pair exists in every direction:

Proposition 4. Suppose that N = 2, A(W) is non-empty valued, and B sub-generates at

W. Then lexicographic optimization in a direction λ terminates in finitely many steps at a

pair (a,p) that is robustly optimal at λ. Moreover, once the algorithm has reached an optimal

pair for λ, every subsequent pair is also optimal for λ.

Proof of Proposition 4. Since lexicographic optimization only affects how ties are broken,

convergence of the algorithm described in Remark 7 implies that lexicographic optimization

will reach a pair that is optimal for λ. Once such a pair is reached, there are no substitutions
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that strictly improve in the direction λ. Thus, any substitution considered by lexicographic

optimization will keep the λ level the same and move payoffs in the direction λ̃, which is

λ rotated 90 degrees clockwise. A straightforward adaptation of the argument for Propo-

sition 2 shows that lexicographic regime minimization produces a sequence of payoffs that

monotonically decrease in the direction λ̃, and lexicographic action maximization produces

payoffs that monotonically increase in the direction λ̃, so that no pair is repeated and the

sequence converges after finitely many steps to a limit (a,p).

We claim that (a,p) is robustly optimal at λ. An important fact used below is that

v >λ v′ if and only if there exists λ′ 6= λ such that λ′′ · v > λ′′ · v′ for all λ′′ ∈ (λ, λ′].

Now, we will argue that (a,p) satisfies the optimality conditions of Lemma 9 for small

clockwise rotations from λ. Since lexicographic optimization has converged, we know that

the analogue of these conditions is satisfied at λ, where we select the lexicocographically

lowest of the recursive payoff and the lexicographically highest binding payoff, and we select

the recursive payoff if the APS gap is lexicographically positive at λ. We shall argue that

this implies that the conditions in Lemma 9 are satisfied for small clockwise rotations.

Let us first consider the min-max conditions. If the APS gap is lexicographically positive

for a(s), then u(s) = uR(a(s),u), and, moreover, the APS gap is positive for some arc (λ, λ′]

with λ′ 6= λ, so that p(s) = R is min-max on (λ, λ′]. If the APS gap is not lexicographically

positive, then there is an arc (λ, λ′′] over which (i) the APS gap is zero, (ii) the payoff v

that is lexicographically highest at λ remains highest, and (iii) the ranking between v and

uR(a(s),u) is strict if and only if there is the same strict lexicographic ranking at λ. The

fact that we have selected the lexicographically minimal of v and uR(a(s),u) then implies

that the Lemma 9 min-max conditions are satisfied on (λ, λ′].

The analysis for optimality is entirely analogous. We conclude that for every regime or

action substitution, there is a non-trivial clockwise arc over which the Lemma 9 conditions

are satisfied. Since there are finitely many substitutions, there exists a non-trivial clockwise

arc over which (a,p) is optimal, so that (a,p) is robustly optimal.

4.2.3 Computing B̃(W)

We now summarize the computation of B̃(W) with two players, assuming that B sub-

generates at W and there is a supportable action profile in each state (otherwise B̃(W)(s)

is empty for some state, so that there are no pure-strategy subgame-perfect equilibria). A

preliminary step is to compute, for each action profile, whether it is supportable, the sets

C(a,W), and the APS gap. This is done as follows. To compute C(a,W), we simply intersect

each of the binding incentive rays with the half spaces that define W, and a is supportable
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if and only if C(a,W) is non-empty (cf. Footnote 10).13 In addition, for each v ∈ C(a,W),

we record the direction on the frontier of B(a,W) that points into the incentive compatible

region, denoted d(v). The APS gap is positive at λ if there is a v ∈ arg maxv∈C(a,W) λ · v′

such that λ · d(v) > 0, and it is lexicographically positive if λ · d(v) > 0 or d(v) = αλ̃ for

some α > 0, where λ̃ is equal to λ rotated 90 degrees clockwise.

After these preliminary calculations, we pick an initial direction λ0 ∈ Λ, at which we

compute a robustly optimal pair (a0,p0) and its payoffs u0. If there are no legitimate test

directions at u0, then we stop. Otherwise, proceeding inductively from uk−1 for k ≥ 1,

we set λk equal to the shallowest legitimate test direction from uk−1 and λk−1. We then

compute a robustly optimal pair (ak,pk) and corresponding robustly optimal payoffs uk for

λk, via lexicographic optimization starting from (ak−1,pk−1). We stop when the direction of

optimization passes λ0, at step K. This procedure is described in Algorithm 6.

Theorem 2. Suppose that N = 2, A(W) is non-empty valued, and B sub-generates at

W. Then the previously described procedure terminates in at most 2LM substitutions and

runtime O(LM
2
). If there are no legitimate test directions at u0, then B̃(W)(s) = {u0(s)}

for all s. Otherwise,

B̃(W)(s) = {v|λk · v ≤ λk · uk(s) ∀k = 1, . . . , K}. (15)

Proof of Theorem 2. As there are supportable actions in every state, convergence to the

initial robustly optimal pair is guaranteed by Proposition 4. If there are no legitimate test

directions, Proposition 3 implies u0 is optimal in every direction and is equal to B̃(W).

Otherwise, there are legitimate test directions at every step of the algorithm. Proposition 3

implies that uk−1 is optimal on [λk−1, λk], so that B̃(W) is equal to right-hand side of (32).

We next argue the complexity bound. The computation of (a0,p0) takes at most L sub-

stitutions. In addition, there are at most 2LM test directions in which we optimize, and

to compute the shallowest legitimate substitution requires the consideration of M substitu-

tions. It remains to bound the number of substitutions that are actually made. If (s, a, p) is

substituted into (ak,pk), then both (ak,pk) and (ak,pk) \ (s, a, p) are optimal in a direction

λk. As a result, λk is one of the two test directions satisfying (14). Since the direction

of optimization rotates monotonically clockwise, it follows that (s, a, p) can be substituted

into (ak,pk) at most twice over the course of the algorithm. Thus, the total number of

substitutions (and hence K) is at most 2LM . Hence, the total runtime is O(LM
2
).

13It is easy to see that A(W) is decreasing in W, so that when B̃ is applied iteratively to generate the

sequence W̃k from (T1.iv), C(a,W) need only be computed for action profiles in A(W̃k−1).
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Remark 8. We have not ruled out the possibility that there are more than L bounding

hyperplanes. This is because x(s, λ,W) need not be convex, and the algorithm may come

back to a pair that was previously found to be optimal. We note, however, that the run-time

of the algorithm is sensitive to the actual number of bounding hyperplanes, which in practice

we have found to be much smaller than L.

4.2.4 Further improvements and single-state substitutions

The algorithm characterized by Section 4.2.3 nominally considers all substitutions when

it searches for the next robust optimum. Proposition 4 shows that we can without loss

restrict attention to substitutions which leave the pair optimal in the shallowest test direction,

speeding up computation. It is possible to go even further, by restricting attention to test

directions for which the associated substitutions which would become strict improvements

for small clockwise rotations, using a lexicographic version of the legitimacy test. This is

done in our software implementation.

In addition, there are many cases where we can find the next robustly optimal pair

directly in a single step, as we now explain. If a “shallowest substitution” (that is, one that

generates a shallowest test direction) entails a new action or a switch to or from a recursive

regime, then frequently it will be unique, as ties across states or actions are exceptional. It is

then trivial to check if the substitution generates the next robustly optimal pair, or whether

the incumbent pair continues to be optimal at λ′.

On the other hand, if all shallowest substitutions entail a change from one binding APS

payoff to another, then the next robustly optimal pair is obtained by switching all of the

binding payoffs to the ones that are lexicographically optimal. For example, if the shallowest

direction is λ′ = (−1, 0), which corresponds to punishing player 1, then payoffs may jump

from minimizing to maximizing player 2’s payoff, subject to minimizing player 1’s payoff.

This and the analogous situation for λ′ = (0,−1) occur frequently in our simulations.

Our code does not currently implement all of these simplifications. We view the software

as a living entity which will continue to be improved by ourselves and the community. Such

improvements can only lead to better performance than that reported in the next section.

4.3 Examples

We have implemented this algorithm in a software package called SGSolve, which is available

through an author’s website and Github, under the terms of the GPLv3 license. The code

consists of routines that implement the algorithm and graphical interface for specifying games

and visualizing solutions. The following two examples were solved using this package. An
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a1/a2 D C
C (−1, 5) (4, 2)
D (0, 0) (5,−1)

Figure 1: An asymmetric Prisoners’ Dilemma.

additional two-player example is reported in Online Appendix C.

4.3.1 Asymmetric Prisoners’ Dilemma

Our first example is the asymmetric repeated Prisoners’ Dilemma of Figure 1, with δ = 1/2.

As there is a single state, we temporarily drop the argument s and use regular font weight.

The computation is depicted in Figure 2. The flow payoffs are four circles. We take W̃ 0

to be the feasible and individually rational payoffs, which are in gray.14 In the center panel,

the shaded polygons are the sets B(a, W̃ 0) generated by the APS operator. For each a and

λ, xAPS(a, λ, W̃ 0) is the level of the highest payoff in B(a, W̃ 0), whereas x(a, λ, W̃ 0) is the

minimum of xAPS(a, λ, W̃ 0) and the recursive level, which in a repeated game is just the

level of the flow payoff.

The initial direction of optimization is λ0 = (0, 1). For APS, the optimal level is

xAPS((C,D), λ0, W̃ 0), which is attained at the top left corner of the red set. This is also the

max-min-max level, since g(C,D) = (−1, 5) is strictly higher in the direction λ0. Note that

player 1’s incentive constraint binds at the optimum, consistent with Proposition 1.

Rotating clockwise from λ0, the algorithm computes a sequence of test directions and

robustly optimal pairs. Between λ0 and λ1, ((C,D), APS) remains optimal. At λ1, both

((C,D), R) is tied with ((C,C), APS), but the latter optimum is robust. At λ2, ((D,C), R)

becomes robustly optimal, as g(D,C) is still below the best APS payoff for (D,C). Between

λ3 and λ4, the robust optimum is ((D,C), APS). At λ4, the optimal switches to ((D,D), R),

which remains optimal until λ5, at which point ((C,D), APS) is again optimal.

The corresponding hyperplanes for these directions and levels are then intersected to form

W̃ 1. It is not hard to see that at the second round, the exact same set will be generated,

i.e., B̃(W̃ 1) = W̃ 1. For even though the binding payoff that was used between λ2 and λ3

is no longer available, the half spaces in this direction were redundant anyway. Thus, the

operator converges after exactly one round.

In contrast, the APS, JYC, and Abreu and Sannikov (2014) operators would all cut less

in the directions between λ2 and λ3. For APS, this is because the best APS payoffs for

(D,C) are higher than the flow payoff. The operator of Abreu and Sannikov (2014) would

14If we started with W̃ 0 equal to the feasible set, then our algorithm would only compute the equilibrium
threats asymptotically, and the algorithm would only converge asymptotically.
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Figure 2: The asymmetric Prisoners’ Dilemma. Left: Feasible and individually rational
payoffs. Center: APS payoffs and optimal max-min-max levels. Right: Equilibrium payoffs.

use the best APS binding payoff for (D,C) between λ2 and λ3, thus leading to a higher

level. Hence, all of these operators would generate a strictly larger W̃ 1. Moreover, in the

second iteration, they would still be able to generate payoffs that are higher than (5,−1) in

directions between λ2 and λ3, and in fact, the optimal level converges only asymptotically.

4.3.2 Risk sharing

Our second example is a risk sharing game in the style of Kocherlakota (1996). Two agents

receive time-varying endowments of a consumption good. The total endowment is always

equal to 1, and the state s represents player 1’s share of the endowment.15 The state is

i.i.d. uniform on an evenly spaced grid between 0 and 1. We let ei(s) denote player i’s

endowment, i.e., e1(s) = s, e2(s) = 1 − s. The agents can make transfers to one another

in increments of 1/(M(|S| − 1)), up to their own endowment. Player i’s consumption is

ci(a, s) = ei(s) + aj − ai. Flow utility is gi(a, s) =
√
ci(a, s).

As is well-known, minimum equilibrium payoffs are attained in autarky, where players

make no transfers and consume their endowments. The resulting payoffs are

vi(s) = (1− δ)
√
ei(s) + δ

1

|S|
∑
s′∈S

√
ei(s′).

There are more efficient equilibria, wherein the players use transfers to smooth consumption

over time. Specifically, the set of feasible payoffs is the convex hull of the vectors (
√
c,
√

1− c)
for all feasible c.16 For δ sufficiently large, the folk theorem says that it is possible to attain

15This version of the model is studied by Ljungqvist and Sargent (2004, Chapter 20).
16It is a special feature of this game that the set of possible flow payoffs is the same across all states, so

that the set of feasible payoffs is just the convex hull of the flow payoffs.
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Figure 3: The two-state risk sharing game.

|S| M # Faces MMM JYC-100 JYC-200
2 20 27 1.5s 24.6s 78.3s
2 40 47 4.3s 1m 54.9s 5m 30.0s
5 20 102 1m 19.7s 9m 55.4s 30m 55.0s
9 15 145 6m 31.2s 44m 18.7s 2h 25m 46.4s

Table 1: Run times on the risk-sharing game for max-min-max and JYC with 100 and 200
evenly spaced directions.

payoffs on the frontier, provided that both players’ insured payoff is at least that of autarky.

Our first example has two states, M = 200, and δ ∈ {0.4, 0.7}. Equilibrium payoffs

are depicted in Figure 3. We stopped iterating when the Hausdorff distance between W̃k

and W̃k−1 was less than 10−8. At δ = 0.4, the algorithm converged in 33 iterations and 16

seconds.17 At δ = 0.7, it converged in 36 iterations and 1 minute and 18 seconds.

At δ = 0.7, full insurance can be supported at a range of consumption levels. This can

be seen because the equilibrium payoff sets overlap with the frontier of feasible payoffs. The

only way to generate these payoffs is to repeat the action profile that generates the given

flow payoff forever. At the low discount factor (δ = 0.4), equilibrium payoffs are bounded

away from the feasible frontier, and efficient risk sharing cannot be supported.

We also computed equilibrium payoffs for a variety of |S| and M , with δ = 0.7 and a

convergence threshold of 10−6. The number of faces of V and run times are reported in

Table 1. For comparison, we have also solved this game using the JYC algorithm, which

approximates the APS operator in a fixed grid of directions using linear programming. This

methodology is readily adapted to stochastic games. Our implementation uses the commer-

cial linear programming software Gurobi, but otherwise it is integrated into the rest of our

17All benchmarks were measured on a mid-2014 MacBook Pro.
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program and uses the same data structures as our implementation of the max-min-max algo-

rithm.18 Columns JYC-100 and JYC-200 in Table 1 report runtimes for our implementation

of the JYC algorithm with 100 and 200 fixed directions, respectively.

We find that JYC takes between one and two orders of magnitude longer than the max-

min-max operator. For example, when there are 5 states and M = 20 (which corresponds

to 81 consumption levels), max-min-max takes 1 minute and 20 seconds, while JYC with

100 directions takes 10 minutes, and with 200 directions takes 31 minutes. Note that these

algorithms produce different outputs: the max-min-max limit has faces which approximate

those of V, whereas the JYC limit bounds payoffs in exogenous directions that are unrelated

to faces of the equilibrium payoff correspondence.

We should be cautious in drawing general conclusions from these simulations: Run times

will vary from game to game, implementation to implementation, and computer to computer.

In many applications, it may not be mission critical whether the algorithm terminates in

three minutes or in three days. Nonetheless, these simulations strongly suggest that our

algorithm will provide faster and more accurate solutions than other known methods.

5 Implementation with many players

5.1 The complexity of V

We now return to the general setting with many players. A critical complication is that

the number of extreme equilibrium payoffs is no longer bounded. Indeed, we will show that

the following three-player repeated game has countably infinitely many extreme equilibrium

payoffs.

The flow payoffs are depicted in Figure 4, where x is a very low negative payoff, and δ =

1/2. This game has twenty-seven action profiles, but only four can be played in equilibrium.

Specifically, (A,A,A) is a static Nash equilibrium, and the permutations of (C,B,B) can be

sustained when the discount factor is sufficiently large (in particular when δ = 1/2). Since

each player can guarantee themselves a payoff of 0 by always playing A, no other action

profile can be played in equilibrium as long as x is sufficiently low.

The equilibrium payoff set V is depicted in the left-hand panel of Figure 5. Online Ap-

pendix B contains detailed analysis of the game. We now present an informal overview. Since

18Our methodology uses the optimal solution in one direction as a starting point for computing solutions
in adjacent directions, thereby accelerating convergence to a solution. JYC emphasize the separability of the
linear programs for each action profile and direction, and their original Fortran implementation starts each
computation from scratch. Our implementation of JYC starts each optimization from the adjacent solution,
which considerably speeds up the computation.
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a3 = A a3 = B a3 = C
a1/a2 A B C A B C A B C
A (4, 4, 4) (0, x, 0) (0, x, 0) (0, 0, x) (3, x, x) (0, x, x) (0, 0, x) (0, 0, x) (0, 0, x)
B (x, 0, 0) (x, x, 3) (x, x, 0) (x, 3, x) (x, x, x) (8, 0, 8) (x, 0, x) (8, 8, 0) (x, x, x)
C (x, 0, 0) (x, x, 0) (x, x, 0) (x, 0, x) (0, 8, 8) (x, x, x) (x, 0, x) (x, x, x) (x, x, x)

Figure 4: A three player game.

only four action profiles can be played in equilibrium, we know that V must be contained in

the triangular pyramid with corners at (4, 4, 4) and the permutations of (0, 8, 8). It includes

(4, 4, 4) and a large flat on the efficient frontier where v1 + v2 + v3 = 16. It is easy to show

that the minimum equilibrium payoff is 3. For each i = 1, 2, 3, there is a face Di where

player i’s payoff is minimized. Besides the Nash payoff, all of the extreme points of V lie in

one of these flats. The remaining faces are triangles with the Nash payoff as one vertex.

Let us focus on D3, which is depicted in the right panel of Figure 5. The set of extreme

points of D3 has two accumulation points, each of which is approached by two sequences.

One sequence starts on the efficient frontier, at points denoted u and u′, and moves down,

and the other starts at inefficient payoffs, denoted v and v′, and moves up. All of these

payoffs are generated by playing (B,B,C) for one period, followed by a continuation payoff

in C(B,B,C).

The set C(B,B,C) is generated as follows. The height of the blue plane in the left-hand

panel of Figure 5 is the continuation value at which player 3’s incentive constraint binds,

i.e., v3 = 6. For each Dk with k = 1, 2, exactly one of the accumulation points and its

corresponding sequences lies above the plane. For each element v̂ of these sequences, there is

a corresponding extreme point of C(B,B,C), where the line between v̂ and (4, 4, 4) crosses

v3 = 6. In addition, there are four more payoffs in C(B,B,C), two of which are generated

by randomizing between u and u′, and two of which are generated by randomizing between

v and v′. Thus, half of the sequences in D3 are generated from sequences in each Dk, for

k = 1, 2.

We note that the same basic structure obtains if we perturb the players’ payoffs, and it

seems to be a generic possibility that the number of extreme equilibrium payoffs is infinite.

As an aside, the development of this example illustrates the potential value of computational

methods in repeated games. Only after being inspired by numerical results were we able to

construct the example analytically.
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Figure 5: Left: Equilibrium payoffs set for the game in Figure 4 with δ = 1/2, looking down
on the Pareto frontier. Right: equilibrium payoffs in which v3 = 3.

5.2 Implementation and approximation with N ≥ 3

Given that V may have infinitely many extreme points, exact computation of the sequence

from (T1.iv) may be impossible. We now describe a procedure that can compute B̃ exactly

when the number of extreme points is small and approximates it when the number of extreme

points blows up.

At every iteration, there will be a set of directions Λ̂k, with Λ̂0 being arbitrary, and we

compute the new correspondence Ŵk+1 = B̃(Ŵk, Λ̂k), where

B̃(W, Λ̂)(s) = {v|λ · v ≤ x(s, λ,W) ∀λ ∈ Λ̂}.

Thus, B̃(·, Λ̂) is analogous to B̃, but where we only bound payoffs for directions in Λ̂. For

future reference, we similarly define

B(W, Λ̂)(s) = {λ · v ≤ xAPS(s, λ,W) for all λ ∈ Λ̂}.

We will fully specify the procedure for updating Λ̂k shortly. At a high level, we will drop

directions that are redundant and add new directions that correspond to faces of B̃(Ŵk), in a

manner analogous to what we did for two players. We will, however, cap the size of Λ̂k so that

the complexity is bounded. Note that for any sequence {Λ̂k}, each correspondence Ŵk must

contain W̃k, and thus V ⊆ ∩k≥0Ŵk. By updating the directions endogenously, the sequence

Ŵk will converge to V if memory permits, and otherwise we coarsen the approximation to

satisfy the complexity bound.
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It is critical, however, to choose Λ̂k so that we retain a key computational advantage of

the max-min-max operator, which is the sufficiency of binding payoffs. When Λ̂k = Λ, this

was established by Lemmas 5 and 6. (Recall that Λ is the set of all directions.) These results

still apply, but the following weaker formulation of Lemma 6 will be useful:

Lemma 16. For any Λ̂ ⊆ Λ, if B̃(W, Λ̂) ⊆W, then B
(
Ŵ
)
⊆ Ŵ, where Ŵ = B̃(W, Λ̂).

Proof of Lemma 16. The proof of Lemma 6 directly implies that B(Ŵ, Λ̂) ⊆ Ŵ. Since B is

decreasing in its second argument, the weaker conclusion of the lemma follows.

By Lemma 5, if B(W, Λ̂) ⊆W, then a positive APS gap in some direction implies that

the minimal regime can be taken to be recursive. As a consequence of Lemma 16, as long

as we choose Λ̂k such that B̃(Ŵk, Λ̂k) ⊆ B̃(Ŵk−1, Λ̂k−1) = Ŵk, the inductive hypothesis

that B sub-generates will be satisfied, so that binding payoffs are sufficient and we need only

compute binding APS payoffs and the local frontier around those payoffs.

In fact, we can go a step further. Recall that the computation of B̃(W, Λ̂) only depends

on the binding APS level x̂APS(s, λ,W) and the sign of γ(a, λ,W). If these two functions are

the same for correspondences W and W′, then we say that they have the same local binding

frontier. Now, suppose that Λ̂k is such that the correspondence B̃(Ŵk−1, Λ̂k) has the same

local binding frontier as Ŵk. Then B̃(Ŵk−1, Λ̂k) need not be a subset of B̃(Ŵk−1, Λ̂k−1).

But as long as we continue to use B̃ in subsequent iterations, the resulting computations

will be exactly the same:

Lemma 17. Suppose W ⊆W′, both correspondences have the same local binding frontier,

and B sub-generates at W. Then for all s, λ, and a ∈ A(W), x(s, λ, a,W) = x(s, λ, a,W′).

Proof of Lemma 17. Since B sub-generates at W, the hypothesis of Lemma 5 is satisfied. Let

us then take r to be minimal regimes for a at W in the direction λ that satisfy the refinement

of Lemma 5, i.e., the regime is recursive whenever the APS gap is strictly positive. Since W

and W′ have the same sign APS gap and the same binding payoffs, we conclude that

x(s, λ, a, r,W) = x(s, λ, a, r,W′). (16)

To verify that r is minimal for a at W′, we need only check the minimality conditions (6).

Equation (16) implies that

xR(a(s), λ, a, r,W) = xR(a(s), λ, a, r,W′). (17)

When r(s) = APS, the optimal APS level is binding, and by hypothesis this level is the

same for W and W′, so that both sides of (6) are unchanged. When r(s) = R, (6) implies
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that xR(a(s), λ, a, r,W) ≤ xAPS(a(s), λ,W). As xAPS is increasing in its third argument,

this implies that xR(a(s), λ, a, r,W) ≤ xAPS(a(s), λ,W′). Combining this last inequality

with (17), we conclude that r satisfies (6) at W′ as well.

In addition, if we add a new direction to Λ̂k that was not present in Λ̂k−1, then this will

only cause Ŵk to shrink further, so that the hypothesis for binding payoffs to be sufficient

will still be satisfied:

Theorem 3. Suppose the sequence {Λ̂k}k≥0 is such that for every k ≥ 1, W
k

= B̃(Ŵk−1, Λ̂k∩
Λ̂k−1) has the same local binding frontier as Ŵk = B̃(Ŵk−1, Λ̂k−1), and assume B(Ŵ0, Λ̂0) ⊆
Ŵ0. Then for every k ≥ 0, B(Ŵk) ⊆ Ŵk. As a result, for any a ∈ A(Ŵk), there exist

minimal regimes such that r(s) = R whenever γ(a(s), λ,Ŵk) > 0.

Proof of Theorem 3. We will argue that for every k, B(Ŵk) ⊆ Ŵk. The second part of the

theorem then follows directly from Lemma 5.

Take as inductive hypotheses that (i) B̃(W
k−1

, Λ̂k−1) ⊆ W
k−1

and (ii) B(Ŵk−1) ⊆
Ŵk−1. We set W

0
= Ŵ0 so that these hypotheses are true for the base case k = 1. Also

note for current and later use that B̃(·, ·) is increasing in its first argument and decreasing

in its second, as is B(·, ·). As a result, Ŵk−1 ⊆ W
k−1

. The assumption that W
j

and Ŵj

have the same local binding frontier for every j ≥ 1 is used freely below. Together with the

inductive hypothesis (ii), Lemma 17 then implies that Ŵk−1 and W
k−1

are interchangeable

in the B̃ operator. Consequently,

B̃(W
k−1

, Λ̂k−1) = B̃(Ŵk−1, Λ̂k−1) = Ŵk. (18)

By the inductive hypothesis (i) and Lemma 16 (where Λ̂ = Λ̂k−1, W = W
k−1

, and W′ =

Ŵk), it follows that B(Ŵk) ⊆ Ŵk, thus extending the inductive hypothesis (ii) to k.

Lemma 17 then implies that Ŵk and W
k

are also interchangeable in B̃. Also, (i) and in-

terchangeability of Ŵk−1 and W
k−1

imply that Ŵk = B̃(Ŵk−1, Λ̂K−1) = B̃(W
k−1

, Λ̂K−1) ⊆
W

k−1
. Hence,

B̃(W
k
, Λ̂k) ⊆ B̃(W

k
, Λ̂k ∩ Λ̂k−1)

= B̃(Ŵk, Λ̂k ∩ Λ̂k−1)

⊆ B̃(W
k−1

, Λ̂k ∩ Λ̂k−1)

= B̃(Ŵk−1, Λ̂k ∩ Λ̂k−1) = W
k
,

where we have used, in order, monotonicity of B̃ in its second argument, interchangeability

of W
k

and Ŵk, monotonicity of B̃ in its first argument, interchangeability of W
k−1

and
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Ŵk−1, and the definition of W
k
. This extends the inductive hypothesis (i) to k.

Having established conditions on {Λ̂k} for binding payoffs to be sufficient, we now fill in

the remaining details of the algorithm. Fix a positive integer L > 0, which is the maximum

number of directions. At every iteration, we construct Λ̂k by first dropping directions in

a set Λ′ such that B̃(Ŵk−1, Λ̂k−1) and B̃(Ŵk−1, Λ̂k−1 \ Λ′) have the same local binding

frontier. This is in fact easy to do: in the process of computing C(a,W̃k−1), we intersect

the binding payoff sets with the half-spaces that define the expected continuation value

set
∑

s∈S π(s|a)Ŵk(s). There is some order in which the directions are intersected. If we

find that the half space (λ, x(s, λ,Ŵk−1) does not result in a change to C(a,W) or the local

frontier around those payoffs for any a, then the direction is redundant and can be dropped.19

After dropping directions, we can add new directions as long as the total number is less

than L. The directions we add are faces of B̃(Ŵk−1), i.e., directions for which there are

N different optimal payoffs which are not contained in an affine subspace of dimension less

than N − 1. This is the natural generalization of test directions from the two-player case.

To compute a face direction, we first pick an initial direction λ0 uniformly in Λ and

compute optimal payoffs u, which with probability one are uniquely optimal (and hence

remain optimal for perturbations in all directions). We then draw a direction of rotation λ̃1

uniformly on Λ and compute the legitimate test direction with the smallest rotation from

λ0 in the direction λ̃1, which is denoted λ1. This step is analogous to that described in

Section 4. The corresponding substitution is (s1, a1, p1), and let d1 = u(s1, a1, p1,u)− u(s1)

be the direction in which the substitution moves payoffs. We then pick a new direction λ̃2

uniformly on the set of directions which are orthogonal to d1, and compute the shallowest

legitimate test direction from λ0 in the direction λ̃2, denoted λ2, with substitution (s2, a2, r2).

Continuing inductively, after n steps, we will have a direction λn and n substitutions which

move payoffs in linearly-independent directions d1, . . . , dn that are orthogonal to λn. After

N − 1 steps, the process converges to a face direction λN−1. Pseudocode for the face-finding

procedure is in Algorithms 8 and 9.

We run this procedure L − |Λ̂k−1 \ Λ′| times and add the new face directions (skipping

duplicates) to Λ̂k−1 to obtain Λ̂k. (Note that L may be greater than the number of face

directions, in which case this procedure necessarily encounters duplicates.) Algorithm 10

gives pseudocode for this step. In practice, we have found it better to generate new directions

once every five iterations or so, while redundant directions are dropped every iteration. This

completes the many-player algorithm.

19Our code randomizes the order in which the half spaces are intersected, in a crude effort to identify a
non-redundant set of directions. This process could in principle be systematized using standard convex hull
algorithms.
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We may compare this procedure with that of JYC. Both algorithms bound payoffs in

a finite number of directions. While JYC use the APS level for each direction, we use the

max-min-max level. The difference is significant, since there are many fewer payoffs that

can be optimal for max-min-max, and we solve out the optimal payoffs when the regime

is recursive. In addition, JYC hold the directions fixed, whereas our procedure adjusts the

directions dynamically to achieve a sharper approximation.

We have implemented this procedure as part of our software package. Online Appendix

C describes two numerical examples. The first is a simple three-player binary-action contri-

bution game, in which the equilibrium payoff set has a small number of faces, to which the

algorithm converges exactly. The second example is a three-player version of the risk-sharing

game considered in Section 4. We use our algorithm to illustrate how partial contracts, in

which two of the three players commit to perfectly insure one another, can lead to lower

welfare for all parties, as the partial contract limits the players’ ability to punish deviations.

The procedure we implemented is just one of many possible ways to generate a sequence

(W̃k, Λ̂k) that satisfies the hypotheses of Theorem 3. For example, we could take W̃0 to be

the feasible payoff correspondence, or to be large hypercubes that contain all flow payoffs (as

we have done in our simulations). In either case, the initial correspondence has finitely many

extreme points, so that B̃(W0) is guaranteed to have finitely many faces. As long as L is

sufficiently large, we can set Λ̂0 = Λ, i.e., all directions, and compute B̃(W0) exactly. This

can be done via a generalization of the face-finding procedure, whereby we recursively map

faces that are adjacent to one another via successive one-dimensional searches. This precision

could be maintained as long as the number of face directions is less than L. One could even

use the above stochastic algorithm temporarily, while the number of face directions is large,

but reverts to exact computation when the payoff sets simplify. We have not attempted to

explore all of these possibilities, and they are promising directions for future research.

6 Lower bounds on V

Like that of APS, our methodology generates a sequence that converges to V from the

“outside,” meaning that every element is a superset of V. This sequence may only converge

asymptotically, so that if we stop iterating after finitely many rounds, we only obtain an

upper bound on V. As a final topic, we adapt our methodology to compute a corresponding

lower bound.

For a fixed ε > 0, consider the following perturbed APS operator: Bε(W)(s) = {v|λ ·v ≤
xAPS(s, λ,W)− ε ∀λ ∈ Λ}. Just like the APS operator, Bε takes compact correspondences

to compact correspondences and is increasing in W. As a result, there is a largest bounded
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fixed point, denoted Vε, which can be computed by iterative application of Bε on any

correspondence that contains Vε. Moreover, Bε is decreasing in ε, which implies that Vε is

decreasing in ε, so that Vε ⊆ V0 = V.

We propose to compute a lower bound on V by generating a sequence that converges

to Vε. At first glance, this plan seems to have the same problem: How do we know when

we have converged to Vε? The difference is that we do not want to compute Vε; we just

want to find a set that self generates. In particular, since the iterates of Bε converge to Vε,

eventually we will obtain a correspondence W such that the Hausdorff distance between W

and Bε(W) is less than ε/2. As a result, B(W) will be strictly larger than W by at least ε/2

in every direction, so that we can robustly certify that B(W) ⊆ V. Note that we have no

guarantee that Vε is close to V, or even non-empty valued. In simulations discussed below,

however, the lower bound we obtain seems to converge to V as ε goes to zero.20

At the same time, a premise of this paper is that B is hard to compute, which is why

we developed the operator B̃, and the same computational difficulties arise when computing

Bε. Fortunately, our methodology can be adapted to compute Vε. Given a policy (a, r), we

define xε(s, λ, a, r,W) to be the unique solution to

xε(s, λ, a, r,W) = −ε+

(1− δ)λ · g(a(s)) + δ
∑

s′∈S π(s′|a(s))xε(s′, λ, a, r,W) if r(s) = R;

xAPS(a(s), λ,W) if r(s) = APS.

We define xε(s, λ,W) = maxa∈A(W) minr∈R x
ε(s, λ, a, r,W) and B̃ε(W) = {v|λ·v ≤ xε(s, λ,W) ∀λ ∈

Λ}. The operator B̃ε satisfies all the desirable properties of B̃. In particular, B̃ε is increasing,

maps compact correspondences to compact correspondences, and has Vε as a fixed point.

As a result, if we fix a correspondence W̃0 that contains Vε and generate the sequence

W̃k = B̃ε(Wk−1), then Vε = ∩∞k=0W̃
k. In fact, we can even take W̃0 to be the upper bound

on V obtained by iterative application of B̃.

This result is reported as Theorem 4 in Online Appendix E, where we rederive all of our

key results, adding in ε’s where appropriate. All of our other results extend as well: For every

direction, there exists a state-independent optimal policy. Binding payoffs are sufficient as

long as Bε sub-generates, and Bε will sub-generate along the sequence we compute as long

as it sub-generates at the first round.21 There is a simple set of conditions that characterize

20We have good reason to think that Vε will not collapse in general. For example, if we were to drop
incentive constraints, then the analogue of Vε is simply the contraction of the feasible payoff correspondence
in every direction by ε/(1− δ).

21For this result, it is essential that the ε penalty is recursively compounded in the definition of xε. If we
simply added an ε penalty in both regimes, the resulting operator would result in a sequence that converges
to Vε, but the penalty attached to recursive payoffs would be too small, so that eventually, the minimal
regime would always be APS.
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optimal policies and optimal pairs. When there are two players, the correspondence Vε has

at most L extreme payoffs, and B̃ε can be computed in runtime O(LM
2
).22

We have implemented the operator B̃ε for two players as part of our software package.

In Online Appendix C, we report an application to the risk-sharing example of Section 4,

for which the lower bound and upper bound are virtually indistinguishable. Beyond two

players, further approximation of B̃ε may be needed, as discussed in Section 5.

7 Conclusion

It has been our purpose to study the subgame perfect equilibria of stochastic games. We have

developed a new fundamental structural property of extremal equilibria, namely that equilib-

rium play is stationary until incentive constraints bind. We developed a new “max-min-max”

algorithm that exploits this structure, using policy iteration when incentive constraints are

slack to obtain tighter bounds than the APS operator on which payoffs can be generated.

The bounds can also be computed using only knowledge of binding payoffs and the slope of

the frontier around those payoffs. Moreover, the optimal equilibrium structure changes in

only one state at a time as the direction of optimization moves, which greatly simplifies the

computation of the set of payoffs that can be generated. When there are two players, the

resulting algorithm, and by extension the equilibrium payoff correspondence, are of bounded

complexity. We have shown by example that the number of extreme equilibrium payoffs

may be infinite with more than two players, but we have provided a flexible routine that

can approximate equilibrium payoffs when computing power is limited and compute them

exactly when the equilibrium correspondence is not too complicated.

The insights that we have developed are obviously particular to the special class of games

we have considered. We have made heavy use of perfect monitoring, public randomization,

and the restriction to pure-strategy equilibria. These assumptions are widely used both

in theory and application and, in our view, are eminently worthy of study. While the

basic results on the max-min-max operator can be extended, these particular insights will

presumably be more or less useful for computation depending on the class of game being

studied. At a broader level, our approach is to develop methods that are tailored to the

special structure that arises in extremal equilibria. It is our hope that similar efforts will

bear fruit for other classes of games and solution concepts, for example, those involving

imperfect monitoring or mixed strategies.

22A subtlety here is that the function xε is no longer linear in λ. Nonetheless, as we argue in Online
Appendix E, B̃ε can be computed by intersecting bounds at test directions.
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Sleet, C. and Ş. Yeltekin (2016): “On the computation of value correspondences for

dynamic games,” Dynamic Games and Applications, 6, 174–186.
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A Online appendix:

Pseudocode for Sections 3, 4, and 5

Algorithm 1 Minimize regimes.

1: procedure MinimizeRegimes(λ,a, r,W)

2: define S̃ to be the states with γ(a(s), λ,W) > 0

3: define r′ := r

4: for all s ∈ S̃ do

5: r′(s) := R . For these states, recursive can be taken to be minimal

6: loop

7: r′′ := r′

8: for all s /∈ S̃ do

9: if x̂APS(a(s), λ,W) < x(s, λ, a, r′,W) then

10: r′′(s) := APS . The best APS payoff is lower

11: else if xR(a(s), λ, a, r′,W) < x(s, λ, a, r′,W) then

12: r′′(s) := R . The recursive payoff is lower

13: if r′′ 6= r′ then

14: r′ := r′′ . Continue updating

15: else

16: return r′ . These regimes are minimal
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Algorithm 2 Optimize the policy.

1: procedure OptimizePolicy(λ,W)

2: define a ∈ A(W)

3: define r ∈ R

4: loop

5: define a′ := a

6: r := MinimizeRegimes(λ, a, r,W)

7: for all s ∈ S, a ∈ A(W)(s) do

8: if and(xR(a, λ, a, r,W) > x(s, λ, a, r,W),

or(γ(a, λ,W) > 0, x̂APS(a, λ,W) > x(s, λ, a, r,W)) then

9: a′(s) := a

10: if a 6= a′ then

11: a := a′ . Continue updating

12: else

13: return (a, r) . The policy is optimal

Algorithm 3 Compute the shallowest legitimate test direction with N = 2.

Require: u is robustly optimal for direction λ

1: procedure FindNextDirection(λ,u,W)

2: define λ′ := λ

3: for all s ∈ S, a ∈ A(W)(s), p ∈ {R} ∪ C(a,W) do . Iterate over all substitutions

4: for all λ′′ that is a test direction for (s, a, p) given u do

5: if and (λ′′ is legitimate, λ′′ is shallower than λ′) then

6: λ′ := λ′′

7: return λ′ . The optimal payoffs may change at λ′

Given N = 2, let ûAPS(a, λ,W) be the highest binding APS payoff in the direction λ where

comparisons are made lexicographically using >λ. In a slight abuse of notation, we write

γ(a, λ+,W) > 0 if the APS gap for a is lexicographically positive at λ. The following

procedure, analogous to Algorithm 1, uses lexicographic comparisons to choose the regimes

which become minimal for the action tuple a after direction λ
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Algorithm 4 Lexicographically minimize regimes for N = 2.

1: procedure LexMinimizeRegimes(λ,a,p,W)

2: define S̃ to be the states where γ(a, λ+,W) > 0

3: define p′ := p

4: for all s ∈ S̃ do

5: p′(s) := R . For these states, recursive must be minimal

6: loop

7: define p′′ := p′

8: define u := the payoffs induced by (a,p′)

9: for all s /∈ S̃ do

10: if u(s) >λ û
APS(a(s), λ,W) then

11: r′′(s) := APS . The best APS payoff is lexicographically lower

12: else if u(s) >λ u
R(a(s), λ,u) then

13: p′′(s) := R . The recursive payoff is lexicographically lower

14: if p′′ 6= p′ then

15: p′ := p′′ . Continue updating

16: else

17: return p′ . This p is minimal

The following procedure, analogous to Algorithm 2, uses lexicographic comparisons to

find the pair which is optimal after direction λ (i.e. the robustly optimal pair).
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Algorithm 5 Lexicographically optimize the policy.

1: procedure LexOptimizePolicy(λ,a, p, W)

2: define a′ := a

3: define p′ := p

4: loop

5: define a′′ := a′

6: p′ := LexMinimizeRegimes(λ, a′,p′,W)

7: define u := the payoffs induced by (a′,p′)

8: for all s ∈ S, a ∈ A(W)(s) do

9: if and (uR(a, λ,u) >λ u(s),

or(γ(a, λ+,W) > 0, ûAPS(a, λ,W) >λ u(s))) then

10: a′′(s) := a

11: if a′′ 6= a′ then

12: a′ := a′′ . Continue updating the actions

13: else

14: for all s ∈ S do

15: if p′(s) = uR(a′(s),u) then

16: p′(s) := R . Make the pair canonical

17: return (a′,p′) . Return the optimal pair
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Algorithm 6 Compute B̃ for N = 2.

Require: B(W) ⊆W

1: procedure B̃(W)

2: for all s ∈ S do

3: define A(W)(s) = ∅
4: for all a ∈ A(s) do

5: Compute C(a,W)

6: if C(a,W) 6= ∅ then

7: A(W)(s) := A(W)(s) ∪ {a}

8: if A(W)(s) = ∅ for some s then

9: return an empty correspondence

10: define W′ := (RN)S . There are supportable actions

11: define λ := (1, 0) . Begin pointing due east

12: define (a,p) to be an arbitrary pair

13: loop

14: define (a′,p′) := LexOptimizePolicy(λ, a,p,W)

15: define u := the payoffs induced by (a,p)

16: λ′ := FindNextDirection(λ,u,W)

17: W′ := W′ ∩ {λ′ · v ≤ λ′ · u} . Intersect W′ with the new half space

18: if λ points strictly north and λ′ points weakly south then

19: return W′ . Completed a full revolution

20: else

21: λ := λ′, a := a′ . Continue with the new direction

Algorithm 7 Compute V to a tolerance ε in the metric d. Returns the approximation.

Require: B(W̃0) ⊆ W̃0 and V ⊆ W̃0

1: procedure Solve(W̃0,ε)

2: define k := 0

3: do

4: k := k + 1

5: W̃k := B̃(W̃k−1)

6: while d(W̃k,W̃k−1) > ε . Stop when the movement is small

7: return W̃k
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Next, given directions λ and λ̃, we define the (λ, λ̃)-line to be the subset of directions

in Λ of the form cos(θ)λ + sin(θ)λ̃, where θ ∈ (0, 2π]. We order (λ, λ̃)-line according to θ

in this parameterization. We also extend the notion of test directions for the substitution

(s, a, p) given the payoffs u to be any direction satisfying (14). Legitimacy also extends to

this setting. Finally, we redefine robust optimality in the many player setting by saying that

u is robustly optimal if it remains optimal in a neighborhood of λ. (Note that this definition

is more restrictive than what is used in Section 4, where robustly optimal payoffs only had

to remain optimal for perturbations in one direction.)

Algorithm 8 Update the direction by rotating towards λ̃. Returns the new direction of
optimization and the direction in which payoffs move.

Require: u is robustly optimal at λ

1: procedure RotateDirection(λ,λ̃,u,W)

2: for all s ∈ S, a ∈ A(W)(s), p ∈ {R} ∪ C(a,W) do

3: for all test directions λ′′ for (s, a, p) and u in the (λ, λ̃)-line do

4: if λ′′ is legitimate and a smaller rotation than λ′ then

5: λ′ := λ′′

6: d := u(s, a, p,u)− u(s) . the direction in which (s, a, p) moves payoffs

7: return (λ′,d)

Algorithm 9 Compute a randomly chosen face of B̃(W). Return the direction and the
corresponding half space.

Require: B(W, Λ̂) ⊆W

1: procedure FindFace(W)

2: define λ0 randomly

3: define (a, r) := OptimizePolicy(λ0,W)

4: define p ∈ P(a,W) to be min-max for (a, r,W)

5: define u := payoffs induced by (a,p)

6: for n = 1, . . . , N − 1 do

7: define λ̃n randomly to be orthogonal to {λ0} ∪ {dl|l = 1, . . . , n− 1}
8: define (λn, dn) :=RotateDirection(λn−1, λ̃n,u,W)

9: define H := {v|λN−1 · v ≤ λN−1 · u}
10: return (λN−1, H)
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Algorithm 10 Approximate B̃(W), given an incumbent set of directions Λ̂. Returns a new
approximation and a new set of directions.

Require: B(W, Λ̂) ⊆W

1: procedure B̃(W,Λ̂,L)

2: define W′ := (RN)S

3: define Λ̂′ := ∅
4: for all λ ∈ Λ̂ do

5: (a, r) := OptimizePolicy(λ,W)

6: define p ∈ P(a,W) to be min-max for (a, r,W)

7: define H := {v|v · λ′ ≤ x(λ′,p,W)}
8: if W′ and W′ ∩H do not have the same local binding frontier then

9: Λ̂′ := Λ̂′ ∪ {λ}
10: W′ := W′ ∩H
11: define K := |Λ̂′|
12: for k = 1, . . . , L−K do

13: (λ,H) := FindFace(W)

14: if W′ and W′ ∩H do not have the same local binding frontier then

15: W′ := W′ ∩H
16: Λ̂′ := Λ̂′ ∪ {λ}

17: return (W′, Λ̂′)

Algorithm 10 can be combined with an analogue of Algorithm 7 to approximate V when

N > 2.
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B Online appendix:

A repeated game with infinitely many

extreme equilibrium payoffs

In this Online Appendix, we give additional details on the three-player example from Section

5.1, depicted in Figure 4, that has infinitely many extreme equilibrium payoffs. First we

construct a self-generating set that turns out to be V . We will then argue that this is in fact

the equilibrium payoff set.

B.1 The equilibrium payoff set

Recall that only four action profiles can be played in equilibrium, which induce payoffs

(4, 4, 4) and permutations of (8, 8, 0). Note that (4, 4, 4) is one of the equilibrium payoffs.

We will generate two sequences of payoffs {ul}∞l=0 and {vl}∞l=0. The payoff u0 corresponds

to u in the right panel of Figure 5, and the subsequent sequence is the sequence of extreme

payoffs that move counter-clockwise around the frontier. The payoff v0 corresponds to v in

the right panel of Figure 5, and the sequence of extreme points moves clockwise around the

frontier. Aside from (4, 4, 4), the extreme equilibrium payoffs are permutations of points in

these sequences.

Every vl is generated the same way, by randomizing between ul and (4, 4, 4), to make the

incentive constraint for player 1 bind, i.e.,

vl =

(
6− 1

ul2 − 4
, 6 +

ul1 − 4

ul2 − 4
, 3

)
=

1

2
(8, 8, 0) +

1

2

[
βl(3, ul1, u

l
2) + (1− βl)(4, 4, 4)

]
, (19)

where

βl =
2

ul2 − 4
. (20)

The payoffs ul are generated in three different ways. First, the permutations of u0, i.e.,

the extreme points on the efficient frontier comprise a self-generating set and are generated

according to

u0 =

(
11

2
,
15

2
, 3

)
=

1

2
(8, 8, 0) +

1

2

[
1

4

(
3,

11

2
,
15

2

)
+

3

4

(
3,

15

2
,
11

2

)]
,

i.e., by playing (B,B,C) for one period, followed by randomizing over two other efficient

extreme payoffs to make the incentive constraint (player 1’s in this case) bind.
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Given u0, we can generate v0 according to (19) and (20), which turns out to be v0 =

(40/7, 45/7, 3), with β0 = 4/7. The payoff u1 is then generated by playing (B,B,C) for one

period, followed by randomization between two permutations of v0:

u1 =

(
11

2
,
99

14
, 3

)
=

1

2
(8, 8, 0) +

1

2

[
α1(3, v02, v

0
1) + (1− α1)(3, v01, v

0
2)
]
.

where α1 = 3/5 is again chosen to make player 1’s incentive constraint bind. Finally, the

rest of the ul sequence for l ≥ 2 is generated according to

ul =

(
6− 1

vl−22 − 4
, 6 +

vl−21 − 4

vl−22 − 4
, 3

)
=

1

2
(8, 8, 0) +

1

2

[
αl(3, vl−21 , vl−22 ) + (1− αl)(4, 4, 4)

]
,

where

αl =
2

vl−22 − 4

is again chosen to make player 1’s constraint bind.

Finally, these sequences converge to the accumulation points in Figure 5, which are

permutations of ((9+
√

5)/2, (11+
√

5)/2, 3). These payoffs, together with (4, 4, 4), comprise

another self-generating set, where(
9 +
√

5

2
,
11 +

√
5

2
, 3

)
=

1

2
(8, 8, 0) +

1

2

[
α∗

(
3,

9 +
√

5

2
,
11 +

√
5

2

)
+ (1− α∗)(4, 4, 4)

]
,

where α∗ = 3−
√

5.

B.2 Feasible set

We next argue that the equilibrium payoff set is the convex hull of the points constructed

heretofore. The analysis consists of several steps. First, since only these three action pro-

files can possibly be played in equilibrium, we know that the equilibrium payoff set must

be contained in the triangular pyramid with peak at (4, 4, 4) and base corners which are

permutations of (0, 8, 8). Thus, the pyramid “points” in the direction (−1,−1,−1). In the

sequel, we refer to this as the “feasible set.”
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Figure 6: Three different bounds on the equilibrium payoff set. Left: The convex hull of
the flow payoffs. Center: The left set less the payoffs that are below the threat point.
Right: Additional payoffs removed to create the set W̃0. Faces that coincide with incentive
constraints are colored tan.

B.3 Equilibrium threats

Clearly, the equilibrium threat point v must be less than 4 (since the Nash equilibrium

is certainly an equilibrium payoff). Thus, from the definition of B̃, the only way that

player 3 can obtain a lower payoff is if (B,B,C) is played in the first period, with a flow

payoff of (8, 8, 0). Moreover, any payoff we generate with this action must be weakly above

(8, 8, 0) in the direction (0, 0,−1), and therefore it must be generated with a binding incentive

constraint. But players 1 and 2 are playing myopic best responses at (B,B,C), so the only

relevant incentive constraint is player 3’s. Plugging in the specified payoffs and discount

factor, we conclude that

v =
1

2
3 +

1

2
v

⇐⇒ v = 3.

B.4 The efficient frontier

In addition, we claim that no equilibrium payoff can lie above the plane that contains (4, 4, 4),

(11/2, 15/2, 3), and (3, 15/2, 11/2), i.e., with level x and direction λ such that

x = λ · (4, 4, 4) = λ ·
(

11

2
,
15

2
, 3

)
= λ ·

(
3,

15

2
,
11

2

)
⇐⇒ x = −52, λ = (−7, 1,−7) . (21)
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(The permutations of this statement also apply when we give the low payoff of 3 to player

1 or player 2). The reason is as follows. Consider maximizing payoffs in this direction. The

optimal level must be at least −52, which is that of (4, 4, 4), the Nash equilibrium. But the

flow payoff (8, 0, 8) has level −112, which is strictly below the Nash level, and hence cannot

generate the optimal payoff. So, we may ask, what is the highest level that can be generated

by (0, 8, 8) or (8, 8, 0)? We will consider the former, and the case for the latter is symmetric.

In this direction, the flow payoffs (0, 8, 8) are maximal among all payoffs in the feasible

pyramid, so that the minimal regime must be APS. To satisfy incentive compatibility, the

continuation value of player 1 must be at least 6. Player 3’s continuation value must be

at least 3 from incentive compatibility. Finally, the sum of the payoffs is at most 16 (from

feasibility). It follows that the highest level that can be attained in this direction is

λ ·
(

1

2
(0, 8, 8) +

1

2
(6, 7, 3)

)
= −52.

Moreover, the permutations of u0 = (11/2, 15/2, 3) are a self-generating set. In particular,(
11

2
,
15

2
, 3

)
=

1

2
(8, 8, 0) +

1

2

[
1

4

(
3,

11

2
,
15

2
,

)
+

3

4

(
3,

15

2
,
11

2

)]
.

We conclude that these are all extreme equilibrium payoffs (being at the corners of the

hyperplanes in (21), the minimum payoff constraints, and the efficient frontier. Moreover,

the convex hull of these points is the set of Pareto efficient payoffs.

The equilibrium payoff set must lie inside the polyhedron defined by the hyperplanes in

(21), the constraints vi ≥ 3 for all i, and the constraint
∑

i vi ≤ 16. We denote this set by

Ŵ .

B.5 Structure of minimal regimes

Note that since (A,A,A) is a Nash equilibrium, no matter what feasible set W we consider, as

long as V ⊆ W , the recursive regime will be minimal for (A,A,A), i.e., x(λ, (A,A,A),W ) =

λ · (4, 4, 4).

In addition, we claim that whenever (B,B,C) is maximal, the minimal regime must

be APS. For we already know that the payoffs (4, 4, 4), and permutations of u0 can be

generated. This pins down the optimal level exactly in all directions except those which

are in the interior of Λ̂1 = co{(−7,−7, 1), (−7, 1,−7), (−1, 0, 0)}, or permutations thereof.

(Outside of these sets of directions, an optimal payoff must be one of the aforementioned

extreme points). Λ̂i denotes the permutations of these directions, where we give the weight
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−1 to a different player. For directions in Λ̂1, it is easy to argue that (0, 8, 8) is higher than

all other payoffs in the feasible triangle, so that necessarily the minimal regime for (C,B,B)

is APS. In addition, either (8, 0, 8) or (8, 8, 0) is minimal among all feasible payoffs, so that

the corresponding minimal regimes are all recursive, and hence these action profiles cannot

be maximal in directions in Λ̂1.

This means that for directions in Λ̂1, the optimal level is simply given by x̂APS((C,B,B), λ),

and we can reduce the computation of B̃ to simply computing the sets C(a) (where we drop

the argument W for notational simplicity) for each a 6= (A,A,A). Specifically, for all W

contained within Ŵ ,

B̃(W ) = co
(
{(4, 4, 4)} ∪a∈{(C,B,B),(B,C,B),(B,B,C)} C(a)

)
.

We also note for future reference that if v ∈ C(a) and v′ ∈ C(a′), then there is no direction in

which both v and v′ are both maximal. This comes from the fact that the sets of directions

λ̂i are disjoint.

B.6 Two more bounds on binding payoffs

The focus of the analysis now shifts to the sets C(a) where ai = C and a−i = (B,B) for

some i ∈ {1, 2, 3}. Ultimately we will construct a sequence of iterates using the B̃ operator

that converge to V and demonstrate that the limit set has infinitely many extreme points.

Before doing so, we will slightly refine the approximation so that the sequence converges in

an orderly manner.

It is straightforward that any v ∈ C(B,B,C) must satisfy vj ≥ 11/2 for j = 1, 2. This

follows from the fact that the flow payoff is 8 and the minimal equilibrium payoff is 3.

In addition, consider the direction (−7,−7,−29). We claim that no payoff in C(a) can

be above the level −172. This level is attained by the Nash payoff (4, 4, 4) and also by

(8, 8, 0) with maximal continuation payoffs w such that w3 ≥ 6 and w · (1,−7,−7) ≤ −52.

In particular, the solution is attained by payoffs

v0 =

(
45

7
,
40

7
, 3

)
=

1

2
(8, 8, 0) +

1

2

[
4

7

(
11

2
, 3,

15

2

)
+

3

7
(4, 4, 4)

]
.

Note that since the permutations of u0 = (15/2, 11/2, 3) are already known to be part of a

self-generating set, we know that v0 are also equilibrium payoffs, and hence the plane with

level −172 in direction (−7,−7,−29) is a supporting hyperplane of V . In fact, it intersects

V in a face that contains (45/7, 40/7, 3), (40/7, 45/7, 3), and (4, 4, 4).

We thus conclude that C(B,B,C) is contained within the trapezoid of payoffs v defined
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by v3 = 3,
∑

i vi ≤ 16, v1 ≥ 11/2, v2 ≥ 11/2, and −29v3−7(v1 +v2) ≤ −172. This trapezoid

is denoted by C̃0
3 (C̃k

i will later denote a sequence of minimal payoff sets for player i). We

note for future reference that C̃0
3 is the convex hull of the payoffs (15/2, 11/2, 3) and

w0 = (11/2, 93/14, 3)

and the permutations obtained by interchanging the payoffs of players 1 and 2. Note that

the payoff w0 is at the intersection of the bounds v1 ≥ 11/2, v3 = 3, and −29v3−7(v1+v2) ≤
−172. We correspondingly define the sets C̃0

1 and C̃0
2 by permuting players’ payoffs. We let

W̃ 0 = co
(
{(4, 4, 4)} ∪i=1,2,3 C̃

0
i

)
,

which will serve as the initial set for the sequence we generate in the next and final subsection.

B.7 The sequence {W̃ k}

We now analyze the sequence of sets produced by iterative application of B̃ to W̃ 0. The

critical issue is to determine the shape of the sets C̃k+1
i . In the following discussion, we take

the perspective of minimum payoffs for player i = 3, but the case is symmetric for the other

players.

We will argue that at iteration k ≥ 0, the set C̃k
3 is the convex hull of the points {ul}kl=0,

{vl}k−1l=0 , the payoff wk defined as above for k = 0 and by

wk =
1

2
(8, 8, 0) +

1

2

[
2

wk−12 − 4

(
3, wk−11 , wk−12

)
+

(
1− 2

wk−12

)
(4, 4, 4)

]
for k ≥ 1, and the permutations thereof obtained by interchanging the payoffs of players 1

and 2. The base case has already been given for k = 0 in the previous subsection.

Let us take as an inductive hypothesis that the set W̃ k is comprised of the following

edges: First, there are edges between the payoffs in C̃k
i . Second, there are edges between

permutations of u0 that are in different C̃k
i sets. Finally, there are edges that connect all of

the payoffs in C̃0
i with the Nash payoff (4, 4, 4).

Given this inductive hypothesis for k − 1, we can easily compute the set C̃k
3 . First,

we compute the intersection of W̃ k−1 with the plane w3 = 6 to find the extreme binding

continuation values for player 3. We then average these payoff with the flow payoff (8, 8, 0)

to obtain Ĉk
3 . The intersections with the w3 = 6 plane must lie on edges of W̃ k−1 that

have one point with v3 higher than 6 and another point with v3 less than 6. There are

three kinds of such edges that have intersections with the w3 = 6 plane: The edges between
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Figure 7: The sets C̃k
i for k ∈ {0, 1, 2, 3}. At every iteration, four new faces are added to

each C̃k
i . The right two panels show the left-hand corner of the set at different levels of

magnification.

permutations of u0, e.g., (3, 11/2, 15/2) and (3, 15/2, 11/2), which will generate the point u0;

The edges between permutations of w0 (when k = 1) or between permutations of v0, which

generate u1 (when k > 1); and the edges between one of the payoffs whose permutation is in

{ul}k−1l=0 ∪ {vl}
k−2
l=0 ∪ {wk−1}, and the Nash payoff (4, 4, 4), which generate a payoff vl, ul+2,

or wk, respectively. From the inductive hypothesis, all of these intersections must result in

new extreme payoffs of C̃k
3 .

As an example, when k = 1, the payoffs generated will be u0, u1, v0 and w1, as well as

their permutations when we swap the payoffs of players 1 and 2. The first five elements of

the C̃k
3 sequence are depicted in Figure 7.

Finally, it remains to argue that the inductive hypothesis will be true for k. The new

payoffs generated in C̃k
3 can be divided into those where player 1’s payoff is at least 6, and

those where player 1’s payoff is less than 6. Focus for now on the former. These payoffs

are maximal for directions that are convex combinations of (−7,−7,−29), (1,−7,−7), and

(0, 0,−1). Note that we have already characterized supporting hyperplanes of V in these

three directions, which are also necessarily supporting hyperplanes of W̃ k. For directions

other than (0, 0,−1) and (1,−7,−7), the only other optimal payoff is (4, 4, 4), so that edges

on supporting hyperplanes in these directions will be composed of either two payoffs in

Ĉk
3 with v1 ≥ 3, or one of the payoffs in C̃k

3 with v1 ≥ 6 and (4, 4, 4). For the direction

(−7,−7,−29), when k = 0, the permutations of w0 and the Nash equilibrium are all optimal,

so there is one additional edge, between the permutations of w0. For k ≥ 1, it is the

permutations of v0 and (4, 4, 4) that are optimal in this direction. Finally, for the direction

(0, 0,−1), all of the payoffs in Ĉk
3 are optimal, so edges here will be between points in Ĉk

3 .

A similar analysis applies to other extreme points, so that the inductive hypothesis is true
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Figure 8: Two views of W̃ 5. Flow payoffs are marked with red crosses. Efficient extreme
payoffs are red dots, inefficient extreme payoffs are blue dots. The minimum incentive
compatible continuation value for player 3 (whose payoff is on the z axis) is a blue plane. The
intersection of this set with the payoff set, contracted towards the payoff (8, 8, 0), generates
the bottom flat of V .

for k.

Note that at the kth round, we drop the permutations of wk−1, but add the permutations

of wk, vk−1, and uk. Thus, the number of extreme points increases by 12 on every iteration.

Moreover, the points uk and vk−1, once added, are never dropped, so the set of extreme

points increases without bound. In the limit, the sequence wk converges to the accumulation

point w∗, which is generated according to

w∗ =
1

2
(8, 8, 0) +

1

2
[α∗ (3, w∗1, w

∗
2) + (1− α∗)(4, 4, 4)] .

The weight α∗ must solve

0 = −1

8
α3 +

1

2
α2 + α− 1.

This equation has three real roots, only one of which is between 0 and 1, which is α∗ = 3−
√

5.

The resulting payoff is

w∗ =

(
9 +
√

5

2
,
11 +

√
5

2
, 3

)
.
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The set W̃ 5 is depicted in Figure 8. At this resolution, this set is indistinguishable from V .

As a final note, while the analysis of this game is involved, in many ways it is the simplest

example possible. Four is the minimum number of equilibrium action profiles such that the

equilibrium payoff set is full dimension, which is necessary for the number of extreme points

to be unbounded. The incentive constraints are also quite simple: One action profile is

a Nash equilibrium, and for each other equilibrium action profile, only a single incentive

constraint binds, that of the player whose payoff is being minimized.
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C Online appendix:

Additional examples

C.1 Two-player two-state Prisoners’ Dilemma

This example illustrates the utility of the test directions in iteratively computing optimal

levels. There are two states, L and R, and the stage game in each state is a Prisoners’

Dilemma with the payoffs in Figure 9. The probability of staying in the same state is 1/3

if the players take the same action, and it is 1/2 if the players take different actions. The

discount factor is δ = 2/3.

We computed the sequence W̃k until the Hausdorff distance between successive iterations

was less than 10−8. The computation took 0.37 seconds. The sequence of payoff correspon-

dences is depicted in Figure 10. The final payoff set for the left state has six extreme points,

and the right state has four.

It turns out that the equilibrium threat point is generated by a policy that plays (D,D)

in both states in the recursive regime. The resulting threat point is

(vi(L), vi(R)) =

(
8

11
,
14

11

)
.

The utilitarian efficient payoffs that are optimal in the direction (1, 1) are generated by

playing (C,C) in both states in the recursive regime. The resulting symmetric payoffs are

19/11 in the left state and 25/11 in the right state.

We may ask, how will the optimal policy change as the direction rotates clockwise from

(1, 1)? A natural conjecture, which turns out to be correct, is that the optimal policy will

change by switching from (C,C) to (D,C) in some state. But should this switch occur first in

the left state or the right state? Both switches would move flow payoffs in the same direction

of (1,−3). But switching from (C,C) to (D,C) in state L would increase the probability

of staying at s = L where payoffs are lower, whereas switching in s = R leads to a higher

probability s = R, where payoffs are higher. Thus, less surplus is burnt by switching when

s = R, and indeed this is the correct substitution.

s = L s = R
a1/a2 D C D C
C (−1, 2) (1, 1) (1, 4) (3, 3)
D (0, 0) (2,−1) (2, 2) (4, 1)

Figure 9: A two-state Prisoners’ Dilemma. The probability of remaining in the same state
is 1/3 if ai = aj, and otherwise it is 1/2.
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s = L s = R

Figure 10: The sequence of correspondences generated by the max-min-max operator.

s = L s = R

Figure 11: Test directions for (D,C), relative to the symmetric efficient payoffs.

Our algorithm resolves this question mechanically using the test directions, which are

depicted in Figure 11. The flow payoffs from (D,C) are depicted with black stars, payoff sets

in blue, expected continuation payoff sets in red, binding incentive constraints in magenta.

The test directions are black arrows. The shallowest legitimate test directions point along

the frontier, and are generated by (D,C) in the right state. Note that there is a tie between

the recursive and APS substitutions: both move payoffs along the frontier,23 although only

the recursive substitution is “lexicographically legitimate” in the sense described in Section

4.2.4.

23In fact, there is a three-way tie, since there is a binding substitution for (C,C) in the right state that
moves payoffs in the same direction. This test direction is not depicted in Figure 11.
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C.2 A three-player contribution game

We implemented the stochastic algorithm for three players as part of the aforementioned

SGSolve package.24 Let us illustrate the algorithm with two examples. The first example is

a simple contribution game: N = 3, S = {1, 2}, Ai(s) = {0, 1}, and

ui(a, s) = 2
N∑
j=1

aj − 3ai + 20s.

The transition probabilities are π(s|a) = 1/2 for every s and a, and δ = 2/3. The stage

game in each state is effectively a three-player Prisoners’ Dilemma.

This example illustrates how our algorithm can solve for the equilibrium payoff exactly.

We initialized the algorithm with 214 directions that are distributed around the unit sphere.

We used the convergence criterion that no directions were added or dropped between itera-

tions, and the Hausdorff distance between consecutive iterations was less than 10−8. Due to

the stochastic nature of the algorithm, its performance varies on each run. On one series of

five runs, the algorithm finished with 9 directions three times, and 10 directions the other

two. Over the course of one of the runs that terminated with 9 face directions, the algorithm

added 72 endogenous directions and dropped 277. In all cases, the algorithm converged in

45 iterations and took between 2.85 and 3.11 seconds.

One can analytically verify that the equilibrium payoff correspondence for this game

has exactly 9 face directions. Thus, in the runs where the algorithm terminated with 9

directions, it correctly identified the structure of equilibrium payoffs, which are depicted in

Figure 12. All sixteen action profiles can be sustained. The efficient points are generated

by always playing a = (1, 1, 1) in both states. There is also an inefficient point which

corresponds to the Nash equilibrium a = (0, 0, 0). The remaining points are generated by

playing permutations of a = (1, 1, 0) and (1, 0, 0). The face in which a player’s payoff is

minimized is attained by ai = 1 and a−i = (0, 0).

For comparison, we solved this game using our implementation of the JYC algorithm with

the same set of 214 initial directions. The same tolerance was achieved in 49 iterations and

3 minutes and 38.45 seconds. So, the JYC code is between one and two orders of magnitude

slower. All of our previous caveats still apply, but we find this suggestive that the stochastic

max-min-max algorithm is significantly more efficient.

A natural question is, which features of the max-min-max operator explain the difference

in performance? We also ran a version of our algorithm with the same 214 initial directions,

24We note that the graphical interface currently only works for two-player games, but the three-player
routines are part of the callable library.
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Figure 12: Equilibrium payoffs for the contribution game. The equilibrium payoff correspon-
dence is in red, and the expected equilibrium payoffs are in gray.

but where we set Λ̂k = Λ̂0 for all k, i.e., the set of directions is held fixed. In this case,

the algorithm converged in 44 iterations and 3.53 seconds. This suggests that most of the

efficiency gain comes from using the max-min-max level rather than APS. The endogeneity

of directions, however, leads to a tight limit set.

C.3 Three-player risk sharing and partial formal insurance

We solved a three-player risk-sharing game, as in Section 4. Each player now has an endow-

ment ei and their actions are vectors that specify how much they transfer to each other player.

For this particular simulation, we used u(c) =
√
c, the endowment grid is E = {0, 0.5, 1}, and

endowment distribution is independent across periods and uniform over endowment profiles

that sum to 1. The discount factor is δ = 0.6. For this simulation, we capped the algorithm

at 300 directions and iterated until a convergence threshold of 10−8. The algorithm con-

verged in 68 seconds and 33 iterations. Over the course of the computation, 492 endogenous

directions were added and 551 redundant directions were dropped. The computed expected

equilibrium payoff set is depicted in the left-hand panel of Figure 13.

As a simple application, we used our algorithms to investigate the following question:

What happens to equilibrium risk sharing and social welfare if the players can write formal

insurance contracts? If all of the players can write a formal full insurance contract, so that

they equally share their collective resources, then the welfare implications are obvious: The

sum of the agents’ surpluses must weakly increase. If only two of the three players can write

such a contract, however, the implications are ambiguous. Suppose that players 2 and 3

write such a contract, so that c2 = c3 and each consumes half of their total endowment net

of transfers to player 1, and their transfers to player 1 are chosen to maximize the joint
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Figure 13: Risk sharing with three players. Left: Expected equilibrium payoffs. Right:
Achievable (v1, v2 + v3) pairs. Non-cooperative play is in blue, and cooperation between
players 2 and 3 is in red.

surplus v2 + v3. On the one hand, players 2 and 3 should be better off, because they are

always guaranteed a minimal level of insurance, so that their autarkic payoffs are higher

with such a contract than without. On the other hand, the higher autarkic payoffs tighten

incentive constraints and may reduce risk sharing with player 1.

We used the two-player algorithm of Section 4 to investigate what would happen if play-

ers 2 and 3 behave cooperatively to maximize their joint surplus. Expected equilibrium

payoffs are plotted in red in the right-hand panel of Figure 13. For comparison, the blue

curve represents the possible (v1, v2 + v3) pairs in the game where players 2 and 3 behave

non-cooperatively. The threat payoff for players 2 and 3 is clearly higher with the contract:

their minimum joint surplus is approximately 0.805 in the non-cooperative case, and ap-

proximately 1.04 when they cooperate. A striking result is that the tightening of incentive

constraints appears to overwhelm the benefits of additional risk sharing, and the Pareto fron-

tier when players 2 and 3 cooperate is strictly below the Pareto frontier when they behave

non-cooperatively. Thus, the example illustrates how partial insurance contracts may lead

to lower social welfare.

C.4 Lower bounds on payoffs

Recall the two-state risk sharing example of Section 4 with δ = 0.7. Figure 14 compares the

upper and lower bounds on equilibrium payoffs, which are blue and red respectively. The

lower bound was computed with ε = 0.005. The red dotted line corresponds to the expansion

of the lower bound by ε in every direction, which is contained in the correspondence that

would be produced by the APS operator. The payoffs that induce the upper and lower
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Figure 14: Lower bounds on V for ε = 0.005. Dots represent the actual payoffs used to
generate the bounds.

bounds are represented as dots. Note that the distance from the payoffs to the lower bound

set varies depending on the direction of the bound. This distance is greater when more

states have a minimal regime that is recursive. When both states are binding, such as the

payoffs that approximate the threat point, the penalty is ε in both states. When one state is

binding, such as when we maximize one player’s payoff, the penalty in the binding state is

still ε, but the penalty in the recursive state is ε/(1− δ/2). When both states are recursive,

which is when the direction is close to maximizing the sum of payoffs, the penalties in both

states are ε/(1 − δ). At directions where the minimal regimes change, the penalties (and

hence the level of the optimal payoffs) change discontinuously.

The computation depicted in Figure 14 used a relatively large value for ε for visual effect.

When ε is small, the distance between the outer and inner bounds shrinks as well and appears

to go to zero. For example, we computed upper bounds on V and Vε to a tolerance of 10−7

when ε = 10−6. The extreme points of the upper bound on V are all within 10−6 of the

bounds for Vε, so that the lower and upper bounds are indistinguishable (up to the tolerance

for computing the extreme points of the upper bound).

67



D Online appendix:

Connections to linear programming

and dynamic programming

To the student of linear programming, our procedure may evoke the simplex algorithm and

sensitivity analysis. The choice of (a, r) bears a resemblance to the choice of a basis, and our

use of test directions and optimization is similarly reminiscent of parametric programming

in the theory of linear programming (see Dantzig and Thapa, 2006, for a comprehensive

treatment). In this section, we attempt to elucidate the connection.

Suppose we were not concerned with incentives at all and simply wanted to compute the

feasible payoff correspondence F, i.e., payoffs that can be obtained with some pure-strategy

profile starting in state s (still allowing public randomization). For a fixed direction λ, the

problem of computing the optimal levels

x(s, λ) = max{λ · v|v ∈ F(s)}

is a Markov decision problem. It is shown by Blackwell (1962) that there is an optimal

strategy profile which is stationary and given by some a ∈ A. There are many ways to

compute the solution, including value function iteration, policy function iteration, and linear

programming. In particular, the levels {x(s, λ)}s∈S are the solution to the linear program

min
yR(·)

∑
s∈S

yR(s) (22a)

s.t. yR(s) ≥ (1− δ)λ · g(a) + δ
∑
s′∈S

π(s′|a)yR(s′) for all s ∈ S, a ∈ A(W)(s). (22b)

A solution can be computed via the simplex algorithm, which will select exactly |S| of the

constraints to bind, so that their intersection uniquely pins down the value of yR. At an

optimum, there must be a binding constraint in each state, since otherwise we could decrease

yR(s), and simultaneously decrease the right-hand side of every constraint. The choice of

binding constraints is therefore a choice of exactly one action profile for each state, i.e.,

an a ∈ A(W), which is an optimal policy. The simplex algorithm would identify such an

optimal policy as a basic solution to the LP (22).

It has long been understood that the output of the simplex algorithm can be used to

conduct “sensitivity analysis”: how much can we perturb the original problem without

changing the optimal basis? In our case, we are concerned with sensitivity to λ, and for

what range of directions would the optimal solution remain the same. As we rotate λ,
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we change the constants in the constraints. Eventually the optimal basis will change, and

generically a single constraint will leave the basis and be replaced by a new one. This

corresponds to changing the optimal policy in a single state. The next action to enter can be

determined using well-known techniques, as in Dantzig and Thapa (2006). Mapping out the

set of solutions for all λ is known as parametric programming, which is also a well established

concept in mathematical optimization. In fact, this is precisely how our algorithm would

behave if we restricted ourselves to using r(s) = R, in which case the algorithm would

converge in exactly one iteration (provided we start with any compact and convex valued

correspondence that contains the feasible correspondence, e.g., large boxes whose bounds are

given by the maximum and minimum flow payoffs across all states and actions.)

This is not our program, since we do have incentive constraints. It is in that sense closer

to the problem of APS, which can also be formulated as an LP thusly: xAPS(s, λ) is the

solution to

min
yAPS(·)

∑
s∈S

yAPS(s) (23a)

s.t. yAPS(s) ≥ max{λ · v|v ∈ B(a,W)} for all s ∈ S, a ∈ A(W)(s). (23b)

This is not an LP in standard form, because of the inner maximization which is also an LP.

But that problem can be replaced with its dual, in which case we have a single minimization

program. Suppose that W has finitely many faces with normals {λl}Ll=0 and corresponding

levels {zl(s)}Ll=0. Let µl(a, s) denote the multiplier on feasibility of the continuation value

for action a in state s in the direction λ, and let αi(a) denote the multiplier on the incentive

constraint for player i. Applying the strong duality theorem of linear programming, we

conclude that the best APS payoff is equal to the minimum of

yAPS(a) =
∑
s′∈S

L∑
l=1

µl(a, s)((1− δ)λl · g(a) + δzl(s))−
N∑
i=1

αi(a)ui(a)

across all µl and αl that are non-negative. Thus, we can expand (23) to

min
yAPS(·),µl(·),αi(·)

∑
s∈S

yAPS(s)

s.t. yAPS(s) ≥ yAPS(a) for all s ∈ S, a ∈ A(W)(s) (24)

Again, this LP could be solved using the simplex algorithm, and one can map out the set of

all basic solutions for all λ using sensitivity analysis and parametric programming.
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Again, this is not our program. Ours is in fact a hybrid of the two:

min
y(·),yR(·),yAPS(·),µl(·)≥0,αi(·)≥0

∑
s∈S

y(s) (25a)

s.t. (22b) and (23b) and (24)

y(s) ≥ min{yR(a), yAPS(a)} ∀s ∈ S, a ∈ A(W)(s). (25b)

This is not an LP, because of the min operator in (25b). However, we can modify this

program to make it into a larger LP, so that one could again use sensitivity analysis and

parametric programming to map out solutions.

Specifically, we can add parameters r(a) ∈ {R,APS} (which are not variables in the LP)

and replace (25a) and (25b) with

min
y(·),yR(·),yAPS(·),µl(·)≥0,αi(·)≥0

∑
s∈S

y(s) +
∑

a∈A(W)(s)

(yR(a) + yAPS(a))


s.t. (22b) and (23b) and (24)

y(s) ≥ yr(a)(a) ∀s ∈ S, a ∈ A(W)(s)

(26)

This is now an LP, and the y(s) in the solution corresponds to the optimal levels under

a particular conjecture as to which are the minimizing regimes, action profile by action

profile. We could compute the level x(s, λ) for a fixed direction by solving a sequence of such

LPs, where at each step, we replace r(a) with arg minr y
r(a), where yr(a) is taken from the

previous solution. This will necessarily produce a decreasing sequence of solutions, whose

limit is x(s, λ).

Now, once we reach the optimal solution regimes r(a), if we add one more constraint:

yr(a)(a) ≤ yr
′
(a) for all s ∈ S, a ∈ A(W)(s), r ∈ {R,APS}, (27)

the optimal solution will not change. Moreover, if we do sensitivity analysis on this expanded

program, we will exactly find the range of directions λ under which the optimal actions and

level-minimizing regimes do not change, action profile by action profile. So, in principle, one

way to map out x(s, λ) is to do sensitivity analysis on the expanded program of (26) and

(27) to find adjacent directions where the solution to that program would change, and for

those adjacent directions, resolve (26), re-optimizing the regimes r(a) as needed.

Overall, this is quite a bit more work than what we have done in our more direct imple-

mentation. Effectively, the LP-based approach involves computing optimal regimes for every
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action profile, even those which are not optimal, whereas our main procedure only computes

minimal regimes for maximal action profiles. We have even implemented the LP based al-

gorithm for two players using Gurobi, a high-performance commercial linear programming

package. We found that this program took an order of magnitude longer to solve than the

more direct implementation described in Section 4.2.

Nonetheless, this discussion may help to explain where the linear structure comes from,

and why we end up using similar objects as those which arise in linear programming. It may

also explain why we cannot simply use off-the-shelf techniques from linear programming in

determining the function x(s, λ).
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E Online appendix: Redux for B̃ε

This appendix extends the key results from Sections 3 and 4 to the operator B̃ε.

E.1 Convergence results

Define the operator

T ε(y, λ, a, r,W)(s) = −ε+

(1− δ)λ · g(a(s)) + δ
∑

s′∈S y(s′)π(s′|a(s)) if r(s) = R;

xAPS(a(s), λ,W) if r(s) = APS.

Lemma 18 (Operator T ε). Fix λ, a, r, and W. As a function of y : S → R, T ε is

(L18.i) increasing;

(L18.ii) a contraction with modulus δ and hence has a unique fixed point y∗;

(L18.iii) if T ε(y) ≤ (≥)y then y∗ ≤ (≥)T ε(y).

Proof. The proof coincides verbatim with that of Lemma 1, changing T to T ε.

Theorem 4 (The perturbed max-min-max algorithm). For every ε > 0, as a function of

W : S → 2RN
, the operator B̃ε has the following properties:

(T4.i) B̃ε is increasing in W, and if W is compact, then B̃ε (W) is compact;

(T4.ii) B̃ε (W) ⊆ Bε (W). Thus, if W ⊆ B̃ε (W), then W is self-generating and W ⊆ Vε;

(T4.iii) Vε = B̃ε (Vε);

(T4.iv) Fix a correspondence W̃0 that contains Vε. Define the sequence
{

W̃k
}∞
k=0

by

W̃k = B̃ε
(
W̃k−1

)
. Then Vε = ∩∞k=0W̃

k.

Proof of Theorem 1.

(T4.i) For every λ and (a, r), we can write

η(s, a, r) = x(s, λ, a, r,W)− xε(s, λ, a, r,W).

Then η uniquely solves the system of equations

η(s, a, r) = ε+

0 if r(s) = APS;

δ
∑

s′∈S π(s′|a(s))η(s′, a, r) otherwise.
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Note for future reference that η is independent of both λ and W. Thus, since x is

monotonic in W, so is xε. This implies monotonicity of B̃ε. B̃ε(W) is also closed,

being the intersection of closed half-spaces, and bounded because x̂APS is bounded,

so that xε is bounded as well.

(T4.ii) Clearly, xε (s, λ,W) ≤ xAPS (s, λ,W)−ε, which implies that B̃ε is always contained

in Bε. Thus, if W ⊆ B̃ε(W), then W ⊆ Bε(W) and hence, by APS, Bε(W) ⊆ Vε.

Consequently, B̃ε(W) ⊆ V.

(T4.iii) From (T4.ii), it suffices to show that Vε ⊆ B̃ε(Vε), i.e., for all λ, xε(s, λ,Vε) ≥
xAPS(s, λ,Vε) − ε. To that end, fix λ, and for all s, let a (s) be an action that

maximizes xAPS (a, λ,Vε) and let w(·) be the associated continuation values as

a function of the next-period state s′. We will show that minr x
ε(s, λ, a, r,Vε) ≥

xAPS(s, λ,Vε)−ε, so that xε(s, λ,Vε) ≥ xAPS(s, λ,Vε)−ε, which implies the result.

Since Vε = Bε(Vε), xAPS(s, λ,Vε) − ε ≥ λ · u for all u ∈ Vε(s′) for all s′. Since

w(s′) ∈ Vε(s′) for all s′,

xAPS(s, λ,Vε) = (1− δ)λ · g(a(s)) + δ
∑
s′∈S

π(s′|a(s)λ ·w(s′)

≤ (1− δ)λ · g(a(s)) + δ
∑
s′∈S

π(s′|a(s)(xAPS(s′, λ,Vε)− ε).

Thus, if we let y(s) = xAPS(s, λ,Vε)−ε for all s, then for any regimes r, T ε(y, λ, a, r,Vε) ≥
y (with equality if r(s) = APS and weak inequality if r(s) = R). By (L18.iii), we

conclude that y(s) = xAPS(s, λ,Vε)− ε ≤ xε(s, λ, a, r,Vε) = y∗(s), as required.

(T4.iv) (T4.ii) implies that W̃k ⊆ Wk, where the latter is the kth element of the APS

sequence for Bε starting from W̃0. Also, the fact that W̃0 contains V, (T4.i), and

(T4.iii) imply that Vε ⊆ W̃k. Thus, Vε ⊆ ∩kW̃k ⊆ ∩kWk = Vε.

E.2 State independence of the optimal policy

We now restate the results for minimal regimes. Let us define

xR,ε(a, λ, a, r) = (1− δ)λ · g(a) + δ
∑
s′∈S

π(s′|a)xε(s′, λ, a, r).
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For given λ, W, and a ∈ A(W), we say that the regimes r are minimal if and only if for all

s ∈ S,

xε(s, λ, a, r) = min
r′∈R

xε(s, λ, a, r′).

Lemma 19 (Minimal regimes). For all a ∈ A(W), λ, and ε > 0,

(L19.i) there exists minimal regimes;

(L19.ii) r is minimal if and only if for all s ∈ S,

xε(s, λ, a, r) =
{
xAPS(a(s), λ), xR,ε(a(s), λ, a, r)

}
− ε; (28)

(L19.iii) if (28) is violated for some s, then r is not minimal. Moreover, for all s′ ∈ S,

xε(s′, λ, a, r \ s) ≤ xε(s′, λ, a, r), with strict inequality in state s.

Proof of Lemma 18. The proof follows verbatim that of Lemma 1, replacing T with T ε.

Proof of Lemma 19. The proof follows verbatim that of Lemma 2, replacing T with T ε, x

with xε, references to equation (6) with (28), and references to Lemma 1 with references to

Lemma 18.

We next extend the results for maximal actions. Define xε(s, λ, a) to be xε(s, λ, a, r) for

some minimal regimes r. Also, define

Tmin,ε(y, λ, a)(s) = min

{
xAPS(a(s), λ), (1− δ)λ · g(a(s)) + δ

∑
s′∈S

y(s′)π(s′|a(s))

}
− ε.

Lemma 20 (Operator Tmin,ε). Fix ε > 0, λ, and a ∈ A(W). As a function of y : S → R,

Tmin,ε is

(L20.i) increasing;

(L20.ii) a contraction with modulus δ, and hence has a unique fixed point y∗;

(L20.iii) if Tmin,ε(y) ≤ (≥)y then y∗ ≤ (≥)Tmin,ε(y);

Proof of Lemma 20. The proof follows verbatim that of Lemma 3, replacing Tmin with

Tmin,ε.

We further define

xR,ε(a, λ, a) = (1− δ)λ · g(a) + δ
∑
s′∈S

π(s′|a)xε(s′, λ, a, r),
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where r is minimal for a and λ.

Lemma 21 (Maximal actions). Suppose that A(W) is non-empty valued. For all ε > 0 and

λ,

(L21.i) there exist maximal actions;

(L21.ii) a ∈ A(W) is maximal if and only if for all s ∈ S and a ∈ A(W)(s),

xε(s, λ, a) ≥ min
{
xAPS(a, λ), xR,ε(a, λ, a)

}
− ε, (29)

with equality when a = a(s);

(L21.iii) if (29) is violated for some s ∈ S and a ∈ A(W)(s), then a is not maximal.

Indeed, for all s′ ∈ S, xε(s′, λ, a \ (s, a)) ≥ xε(s′, λ, a), with strict inequality in

state s.

Proof of Lemma 21. Once again, this follows verbatim the proof of Lemma 4, replacing x

with xε, Tmin with Tmin,ε, references to (7) with references to (29), and references to Lemma

3 with references to Lemma 20.

E.3 Sufficiency of binding payoffs

Lemma 22. For any direction λ, if Bε sub-generates at W in the direction λ, then for any

a ∈ A(W), if γ(a(s), λ,W) > 0, then

xAPS(a(s), λ,W)− ε ≥ xR,ε(a(s), λ, a,W)− ε = xε(s, λ, a,W)

Moreover, there exist minimal regimes such that r(s) = R for s with γ(a(s), λ,W) > 0.

Proof of Lemma 22. Suppose that γ (a (s) , λ,W) > 0. Then the best continuation values

from W in the direction λ, denoted w, must be incentive compatible for a(s), and

xAPS (a (s) , λ,W) = (1− δ)λ · g (a (s)) + δ
∑
s′∈S

π (s′|a (s))λ ·w (s′) .

Sub-generation and the definition of xε imply that λ · w(s′) ≥ xAPS (a (s′) , λ,W) − ε ≥
xε (s′, λ,W). Hence,

xAPS (a (s) , λ,W)− ε ≥ (1− δ)λ · g (a (s)) + δ
∑
s′∈S

π (s′|a (s))xε(s′, λ,W)

≥ xR,ε (a (s) , λ, a,W)
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as desired.

Finally, suppose r is minimal and γ(a(s), λ,W) > 0. If xAPS(a(s), λ,W) > xR,ε(a(s), λ, a,W),

then r(s) is necessarilyR. Otherwise, (9) implies that xAPS(a(s), λ,W) = xR,ε(a(s), λ, a,W).

Thus, if we set r′(s) = R for all states with γ(a(s), λ,W) > 0 and r′(s′) = r(s′) otherwise,

then xε(·, λ, a, r,W) is clearly a fixed point of T ε(·, λ, a, r′,W), so that r′ also satisfies (6)

and is minimal.

Lemma 23. If B̃ε sub-generates at W, then Bε sub-generates at B̃ε(W).

Proof of Lemma 23. Towards a contradiction, suppose that some action profile a ∈ A(W)(s),

with continuation values w ∈ B̃ε(W), generates a payoff outside the convex set B̃ε(W). Then

for some direction λ, xAPS(a, λ, B̃ε(W))− ε > xε(s, λ,W), so

xε(s, λ,W) + ε < xAPS(a, λ, B̃(W)) = λ ·

(
(1− δ)g(a) + δ

∑
s′∈S

π(s′|a)w(s′)

)
≤ (1− δ)λ · g(a) + δ

∑
s′∈S

π(s′|a)xε(s′, λ,W),

where the last inequality holds because λ·w(s′) ≤ xε(s′, λ,W), since w(s′) ∈ B̃ε(W)(s′). The

right-hand side of this inequality equals xR,ε(a, λ, a,W) for any a ∈ A(W)(s) that is maximal

in the direction λ (given W). Since B̃ε(W) ⊆ W, we know that xAPS(s, λ,W) is greater

than xε(s, λ,W) as well. That is, xε(s, λ, a,W) < min{xAPS(a, λ,W), xR,ε(a, λ, a,W)} − ε,
contradicting (L21.ii).

Proposition 5 (Sufficiency of binding payoffs). As long as Bε sub-generates at W̃0, then for

any k ≥ 0, Bε sub-generates at W̃k. As a result, for any λ and a ∈ A(W), if γ(a, λ,W̃k) > 0

is strictly positive, then r∗(s) = R.

Proof of Proposition 5. Follows verbatim the proof of Proposition 1, replacing B and B̃ with

Bε and B̃ε, respectively.

Finally, we extend the characterizations of optimal policies and optimal pairs.

Lemma 24. If Bε sub-generates at W in the direction λ, the actions a ∈ A(W) are maximal

if and only if for all (s, a),

xε(s, λ, a) ≥

min
{
x̂APS(a, λ), xR,ε(a, λ, a)

}
− ε if γ(a, λ,W) = 0;

xR,ε(a, λ, a)− ε if γ(a, λ,W) > 0.
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Note that Lemma 10 implies, via the same argument in Corollary 1, that Vε has at most L

extreme points. Moreover, we can adapt the algorithm in Section 4 to compute B̃ε(W). It is

still the case that direction where robustly optimal payoffs u cease to be optimal corresponds

to a substitution (s, a, p). When p = R, the change must occur at a direction λ′ such that

λ′ · (uR(a,u)− u(s)) =
∑
s′∈S

π(s′|a)η(s′, a, r) + ε− η(s, a, r), (30)

so that the change in level is exactly offset by a change in penalty, and otherwise

λ′ · (p− u(s)) = ε− η(s, a, r), (31)

where r are the regimes associated with the incumbent optimal pair that induces u. There are

at most 2LM directions that satisfy (30) or (31). Such a direction is again called legitimate

if (a,p) is optimal in that direction. We can therefore compute B̃ε by finding the optimal

pair in one direction, then iteratively computing the legitimate substitution direction with

the smallest clockwise rotation, and then lexicographically optimizing the pair in the new

direction. This produces a sequence of directions and optimal payoffs {(λk,uk)}Kk=0.

Note that a subtle issue is that the new optimal level xε(s, λ,W) is no longer piecewise

linear, but is piecewise affine of the form λ · u − η, where η > 0. Because of the sign of

the constant, it turns out that directions at which the optimal pair does not change are still

redundant. In particular, if we have a clockwise sequence of directions λ, λ′, and λ′′ at which

u are the optimal payoffs in state s and η is the optimal penalty, then

λ′ · v =
αλ+ (1− α)λ′′

‖αλ+ (1− α)λ′′‖
· v

≤ 1

‖αλ+ (1− α)λ′′‖
[α(λ · u− η) + (1− α)(λ′′ · u− η)]

= λ′ · u− 1

‖αλ+ (1− α)λ′′‖
η

≤ λ′ · u− η,

since ‖αλ+(1−α)λ′′‖ ≤ 1. As a result, we can simply intersect the half-spaces at legitimate

test directions to compute B̃ε. We therefore have:

Theorem 5. Suppose that N = 2, A(W) is non-empty valued, and Bε sub-generates at

W. Then the previously described procedure terminates in at most 2LM substitutions and

runtime O(LM
2
). If there are no legitimate test directions at u0, then B̃(W)(s) = {u0(s)}
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for all s. Otherwise,

B̃ε(W)(s) = {v|λk · v ≤ λk · uk(s) ∀k = 1, . . . , K}. (32)
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